


人教版新課標(biāo)A選修2-21.1變化率與導(dǎo)數(shù)教學(xué)設(shè)計(jì)
展開
這是一份人教版新課標(biāo)A選修2-21.1變化率與導(dǎo)數(shù)教學(xué)設(shè)計(jì),共4頁。
教學(xué)目標(biāo)
1.了解平均變化率與割線斜率之間的關(guān)系;
2.理解曲線的切線的概念;
3.通過函數(shù)的圖像直觀地理解導(dǎo)數(shù)的幾何意義,并會用導(dǎo)數(shù)的幾何意義解題;
教學(xué)重點(diǎn):曲線的切線的概念、切線的斜率、導(dǎo)數(shù)的幾何意義;
教學(xué)難點(diǎn):導(dǎo)數(shù)的幾何意義.
教學(xué)過程:
一.創(chuàng)設(shè)情景
(一)平均變化率、割線的斜率
(二)瞬時(shí)速度、導(dǎo)數(shù)
我們知道,導(dǎo)數(shù)表示函數(shù)y=f(x)在x=x0處的瞬時(shí)變化率,反映了函數(shù)y=f(x)在x=x0附近的變化情況,導(dǎo)數(shù)的幾何意義是什么呢?
二.新課講授
(一)曲線的切線及切線的斜率:如圖3.1-2,當(dāng)沿著曲線趨近于點(diǎn)時(shí),割線的變化趨勢是什么?
圖3.1-2
我們發(fā)現(xiàn),當(dāng)點(diǎn)沿著曲線無限接近點(diǎn)P即Δx→0時(shí),割線趨近于確定的位置,這個確定位置的直線PT稱為曲線在點(diǎn)P處的切線.
問題:⑴割線的斜率與切線PT的斜率有什么關(guān)系?
⑵切線PT的斜率為多少?
容易知道,割線的斜率是,當(dāng)點(diǎn)沿著曲線無限接近點(diǎn)P時(shí),無限趨近于切線PT的斜率,即
說明:(1)設(shè)切線的傾斜角為α,那么當(dāng)Δx→0時(shí),割線PQ的斜率,稱為曲線在點(diǎn)P處的切線的斜率.
這個概念: ①提供了求曲線上某點(diǎn)切線的斜率的一種方法;
②切線斜率的本質(zhì)—函數(shù)在處的導(dǎo)數(shù).
(2)曲線在某點(diǎn)處的切線:1)與該點(diǎn)的位置有關(guān);2)要根據(jù)割線是否有極限位置來判斷與求解.如有極限,則在此點(diǎn)有切線,且切線是唯一的;如不存在,則在此點(diǎn)處無切線;3)曲線的切線,并不一定與曲線只有一個交點(diǎn),可以有多個,甚至可以無窮多個.
(二)導(dǎo)數(shù)的幾何意義:
函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)等于在該點(diǎn)處的切線的斜率,
即
說明:求曲線在某點(diǎn)處的切線方程的基本步驟:
①求出P點(diǎn)的坐標(biāo);
②求出函數(shù)在點(diǎn)處的變化率 ,得到曲線在點(diǎn)的切線的斜率;
③利用點(diǎn)斜式求切線方程.
(二)導(dǎo)函數(shù):
由函數(shù)f(x)在x=x0處求導(dǎo)數(shù)的過程可以看到,當(dāng)時(shí), 是一個確定的數(shù),那么,當(dāng)x變化時(shí),便是x的一個函數(shù),我們叫它為f(x)的導(dǎo)函數(shù).記作:或,
即:
注:在不致發(fā)生混淆時(shí),導(dǎo)函數(shù)也簡稱導(dǎo)數(shù).
(三)函數(shù)在點(diǎn)處的導(dǎo)數(shù)、導(dǎo)函數(shù)、導(dǎo)數(shù) 之間的區(qū)別與聯(lián)系。
1)函數(shù)在一點(diǎn)處的導(dǎo)數(shù),就是在該點(diǎn)的函數(shù)的改變量與自變量的改變量之比的極限,它是一個常數(shù),不是變數(shù)。
2)函數(shù)的導(dǎo)數(shù),是指某一區(qū)間內(nèi)任意點(diǎn)x而言的, 就是函數(shù)f(x)的導(dǎo)函數(shù)
3)函數(shù)在點(diǎn)處的導(dǎo)數(shù)就是導(dǎo)函數(shù)在處的函數(shù)值,這也是 求函數(shù)在點(diǎn)處的導(dǎo)數(shù)的方法之一。
三.典例分析
例1:(1)求曲線y=f(x)=x2+1在點(diǎn)P(1,2)處的切線方程.
(2)求函數(shù)y=3x2在點(diǎn)處的導(dǎo)數(shù).
解:(1),
所以,所求切線的斜率為2,因此,所求的切線方程為即
(2)因?yàn)?br>所以,所求切線的斜率為6,因此,所求的切線方程為即
(2)求函數(shù)f(x)=在附近的平均變化率,并求出在該點(diǎn)處的導(dǎo)數(shù).
解:
例2.(課本例2)如圖3.1-3,它表示跳水運(yùn)動中高度隨時(shí)間變化的函數(shù)
,根據(jù)圖像,請描述、比較曲線在、、附近的變化情況.
解:我們用曲線在、、處的切線,刻畫曲線在上述三個時(shí)刻附近的變化情況.
當(dāng)時(shí),曲線在處的切線平行于軸,所以,在附近曲線比較平坦,幾乎沒有升降.
當(dāng)時(shí),曲線在處的切線的斜率,所以,在附近曲線下降,即函數(shù)在附近單調(diào)遞減.
當(dāng)時(shí),曲線在處的切線的斜率,所以,在附近曲線下降,即函數(shù)在附近單調(diào)遞減.
從圖3.1-3可以看出,直線的傾斜程度小于直線的傾斜程度,這說明曲線在附近比在附近下降的緩慢.
例3.(課本例3)如圖3.1-4,它表示人體血管中藥物濃度(單位:)隨時(shí)間(單位:)變化的圖象.根據(jù)圖像,估計(jì)時(shí),血管中藥物濃度的瞬時(shí)變化率(精確到).
解:血管中某一時(shí)刻藥物濃度的瞬時(shí)變化率,就是藥物濃度在此時(shí)刻的導(dǎo)數(shù),從圖像上看,它表示曲線在此點(diǎn)處的切線的斜率.
如圖3.1-4,畫出曲線上某點(diǎn)處的切線,利用網(wǎng)格估計(jì)這條切線的斜率,可以得到此時(shí)刻藥物濃度瞬時(shí)變化率的近似值.
作處的切線,并在切線上去兩點(diǎn),如,,則它的斜率為:
所以
下表給出了藥物濃度瞬時(shí)變化率的估計(jì)值:
四.課堂練習(xí)
1.求曲線y=f(x)=x3在點(diǎn)處的切線;
2.求曲線在點(diǎn)處的切線.
五.回顧總結(jié)
1.曲線的切線及切線的斜率;
2.導(dǎo)數(shù)的幾何意義
六.布置作業(yè)0.2
0.4
0.6
0.8
藥物濃度瞬時(shí)變化率
0.4
0
-0.7
-1.4
相關(guān)教案
這是一份高中數(shù)學(xué)人教版新課標(biāo)B選修2-21.1.3導(dǎo)數(shù)的幾何意義教學(xué)設(shè)計(jì),共4頁。
這是一份高中數(shù)學(xué)人教版新課標(biāo)A選修2-21.1變化率與導(dǎo)數(shù)教案,共5頁。
這是一份高中數(shù)學(xué)人教版新課標(biāo)A選修2-21.1變化率與導(dǎo)數(shù)教案,共4頁。教案主要包含了課前準(zhǔn)備,新課導(dǎo)學(xué),總結(jié)提升等內(nèi)容,歡迎下載使用。

相關(guān)教案 更多
- 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯誤問題請聯(lián)系客服,如若屬實(shí),我們會補(bǔ)償您的損失
- 2.壓縮包下載后請先用軟件解壓,再使用對應(yīng)軟件打開;軟件版本較低時(shí)請及時(shí)更新
- 3.資料下載成功后可在60天以內(nèi)免費(fèi)重復(fù)下載