搜索
    上傳資料 賺現(xiàn)金

    第一單元 圓的半徑直徑與周長(zhǎng)面積三大關(guān)系問題專項(xiàng)練習(xí)-【北師大版】最新六年級(jí)數(shù)學(xué)上冊(cè)典型例題系列(專練)

    • 564.3 KB
    • 2025-01-12 22:45
    • 207
    • 0
    • 小初高資料庫(kù)
    加入資料籃
    立即下載
    當(dāng)前壓縮包共包含下列2份文件,點(diǎn)擊文件名可預(yù)覽資料內(nèi)容
    • 原卷
      第一單元:圓的半徑直徑與周長(zhǎng)面積三大關(guān)系問題專項(xiàng)練習(xí)最新六年級(jí)數(shù)學(xué)上冊(cè)典型例題系列(原卷版)北師大版.docx
    • 解析
      第一單元:圓的半徑直徑與周長(zhǎng)面積三大關(guān)系問題專項(xiàng)練習(xí)--最新六年級(jí)數(shù)學(xué)上冊(cè)典型例題系列(解析版)北師大版.docx
    第一單元:圓的半徑直徑與周長(zhǎng)面積三大關(guān)系問題專項(xiàng)練習(xí)最新六年級(jí)數(shù)學(xué)上冊(cè)典型例題系列(原卷版)北師大版第1頁(yè)
    1/4
    第一單元:圓的半徑直徑與周長(zhǎng)面積三大關(guān)系問題專項(xiàng)練習(xí)最新六年級(jí)數(shù)學(xué)上冊(cè)典型例題系列(原卷版)北師大版第2頁(yè)
    2/4
    第一單元:圓的半徑直徑與周長(zhǎng)面積三大關(guān)系問題專項(xiàng)練習(xí)--最新六年級(jí)數(shù)學(xué)上冊(cè)典型例題系列(解析版)北師大版第1頁(yè)
    1/17
    第一單元:圓的半徑直徑與周長(zhǎng)面積三大關(guān)系問題專項(xiàng)練習(xí)--最新六年級(jí)數(shù)學(xué)上冊(cè)典型例題系列(解析版)北師大版第2頁(yè)
    2/17
    第一單元:圓的半徑直徑與周長(zhǎng)面積三大關(guān)系問題專項(xiàng)練習(xí)--最新六年級(jí)數(shù)學(xué)上冊(cè)典型例題系列(解析版)北師大版第3頁(yè)
    3/17
    還剩2頁(yè)未讀, 繼續(xù)閱讀

    第一單元 圓的半徑直徑與周長(zhǎng)面積三大關(guān)系問題專項(xiàng)練習(xí)-【北師大版】最新六年級(jí)數(shù)學(xué)上冊(cè)典型例題系列(專練)

    展開

    這是一份第一單元 圓的半徑直徑與周長(zhǎng)面積三大關(guān)系問題專項(xiàng)練習(xí)-【北師大版】最新六年級(jí)數(shù)學(xué)上冊(cè)典型例題系列(專練),文件包含第一單元圓的半徑直徑與周長(zhǎng)面積三大關(guān)系問題專項(xiàng)練習(xí)最新六年級(jí)數(shù)學(xué)上冊(cè)典型例題系列原卷版北師大版docx、第一單元圓的半徑直徑與周長(zhǎng)面積三大關(guān)系問題專項(xiàng)練習(xí)--最新六年級(jí)數(shù)學(xué)上冊(cè)典型例題系列解析版北師大版docx等2份試卷配套教學(xué)資源,其中試卷共21頁(yè), 歡迎下載使用。
    北師大版小學(xué)數(shù)學(xué)教材的特點(diǎn) 北師大版小學(xué)數(shù)學(xué)教材作為當(dāng)前備受關(guān)注的一個(gè)教材,特點(diǎn)如下: 1、課本內(nèi)容全面。以學(xué)生的學(xué)習(xí)視角出發(fā),貼近生活,融入日常生活的知識(shí); 2、圖文融合,生動(dòng)活潑。讓學(xué)生更加專注,激發(fā)孩子的學(xué)習(xí)興趣; 3、實(shí)際操作。讓學(xué)生更加理解概念,重點(diǎn)就是內(nèi)容貼近實(shí)際行動(dòng); 4、卡片聯(lián)系。不僅對(duì)內(nèi)容理解,還可以聯(lián)系出不同的知識(shí),提高數(shù)學(xué)理解和思考能力; 5、教學(xué)重點(diǎn)突出。強(qiáng)調(diào)基礎(chǔ)知識(shí)的記憶及熟練掌握,及時(shí)根據(jù)學(xué)生的學(xué)習(xí)情況進(jìn)行相關(guān)調(diào)整,培養(yǎng)學(xué)生勤學(xué)苦練的良好思維習(xí)慣,讓學(xué)生全面掌握數(shù)學(xué)知識(shí)。 六年級(jí)數(shù)學(xué)上冊(cè)典型例題系列 第一單元:圓的半徑直徑與周長(zhǎng)面積三大關(guān)系問題專項(xiàng)練習(xí) 專項(xiàng)練習(xí)一:比例關(guān)系問題。 1.寫出下面各題的最簡(jiǎn)單的整數(shù)比。 (1)一個(gè)圓的半徑和直徑的比是( )。 (2)兩個(gè)圓的半徑分別是2cm和3cm,它們的直徑的比是( ),周長(zhǎng)的比是( ),面積的比是( )。 【答案】(1)1∶2 (2) 2∶3 2∶3 4∶9 【分析】(1)同一個(gè)圓,直徑是半徑的2倍,根據(jù)比的意義,寫出半徑和直徑的比即可; (2)兩個(gè)圓的半徑比=直徑比=周長(zhǎng)比,圓的周長(zhǎng)=2πr,圓的面積=πr2,半徑比的前后項(xiàng)分別平方以后的比是面積比。 【詳解】(1)一個(gè)圓的半徑和直徑的比是1∶2。 (2)22∶32=4∶9,兩個(gè)圓的半徑分別是2cm和3cm,它們的直徑的比是2∶3,周長(zhǎng)的比是2∶3,面積的比是4∶9。 【點(diǎn)睛】關(guān)鍵是理解比的意義,熟悉圓的特征,掌握并靈活運(yùn)用圓的周長(zhǎng)和面積公式。 2.兩個(gè)圓的半徑之比是4∶3,它們的直徑之比是( ),周長(zhǎng)之比是( ),面積之比是( ),如果較大的圓的周長(zhǎng)是12.56cm,則較小的圓的周長(zhǎng)是( )cm。 【答案】 4∶3 4∶3 16∶9 9.42 【分析】由題意可知,兩個(gè)圓的半徑之比是4∶3,則假設(shè)兩個(gè)圓的半徑分別為4和3,根據(jù)直徑=半徑×2,圓的周長(zhǎng)公式:C=πd,圓的面積公式:S=πr2,據(jù)此求出它們的直徑之比、周長(zhǎng)之比和面積之比;根據(jù)圓的周長(zhǎng)公式求出較大的圓的直徑,進(jìn)而求出較小的圓的直徑,最后求出較小的圓的周長(zhǎng)。 【詳解】假設(shè)兩個(gè)圓的半徑分別為4和3 (4×2)∶(3×2) =8∶6 =(8÷2)∶(6÷2) =4∶3 4π∶3π=4∶3 42π∶32π =16π∶9π =16∶9 12.56÷3.14=4(cm) 4÷4×3 =1×3 =3(cm) 3.14×3=9.42(cm) 則兩個(gè)圓的半徑之比是4∶3,它們的直徑之比是4∶3,周長(zhǎng)之比是4∶3,面積之比是16∶9,如果較大的圓的周長(zhǎng)是12.56cm,則較小的圓的周長(zhǎng)是9.42cm。 【點(diǎn)睛】本題考查比的意義,結(jié)合圓的周長(zhǎng)和面積的計(jì)算方法是解題的關(guān)鍵。 3.甲、乙兩個(gè)圓的直徑比是3∶5,甲、乙兩個(gè)圓的周長(zhǎng)比是( ),面積比是( )。 【答案】 3∶5 9∶25 【分析】已知甲、乙兩個(gè)圓的直徑比是3∶5,根據(jù)圓的直徑d=2r可知,甲、乙兩個(gè)圓的半徑比也是3∶5;可以設(shè)甲圓的半徑為3,乙圓的半徑為5;然后根據(jù)圓的周長(zhǎng)公式C=2πr,圓的面積公式S=πr2,分別求出兩個(gè)圓的周長(zhǎng)和面積,再根據(jù)比的意義寫出兩個(gè)圓的周長(zhǎng)之比和面積之比,然后化簡(jiǎn)比即可。 【詳解】設(shè)甲圓的半徑為3,乙圓的半徑為5; 甲圓的周長(zhǎng):2×π×3=6π 乙圓的周長(zhǎng):2×π×5=10π 6π∶10π=6∶10=3∶5 甲圓的面積:π×32=9π 乙圓的面積:π×52=25π 9π∶25π=9∶25 甲、乙兩個(gè)圓的周長(zhǎng)比是3∶5,面積比是9∶25。 【點(diǎn)睛】明確兩個(gè)圓的半徑之比、周長(zhǎng)之比等于它們的直徑之比,兩個(gè)圓的面積之比等于它們的半徑的平方比。 4.兩個(gè)圓的周長(zhǎng)之比是3:2,它們的面積差是10cm2那么它們的面積之和是   cm2. 【答案】26 【詳解】試題分析:因?yàn)閮蓚€(gè)圓的周長(zhǎng)之比是3:2,所以半徑比也是:3:2,所以面積比是:32:22=9:4,由此分別求出大圓和小圓的面積,進(jìn)而求出它們的和. 解:因?yàn)閮蓚€(gè)圓的周長(zhǎng)之比是3:2, 所以半徑比也是:3:2, 所以面積比是:32:22=9:4, 即大圓面積是:10÷(9﹣4)×9=18(平方厘米) 小圓面積是:10÷(9﹣4)×4=8(平方厘米), 面積和是:18+8=26(平方厘米), 答:它們的面積之和是26平方厘米; 故答案為26. 點(diǎn)評(píng):本題主要是靈活利用圓的周長(zhǎng)公式和圓的面積公式和按比例分配的方法解決問題. 5.一個(gè)直角三角形,三邊長(zhǎng)度分別是3厘米、4厘米、5厘米,這個(gè)三角形的面積是( )平方厘米;大小兩個(gè)圓,它們的直徑之比是3∶2,那么,周長(zhǎng)之比是( ),面積之比是( )。 【答案】 6 3∶2 9∶4 【分析】直角三角形中斜邊最長(zhǎng),兩條直角邊互為彼此的底和高,利用“”求出這個(gè)三角形的面積;假設(shè)出兩個(gè)圓的直徑,利用“”“”分別表示出這兩個(gè)圓的周長(zhǎng)和面積,最后求出它們的周長(zhǎng)比和面積比,據(jù)此解答。 【詳解】3×4÷2 =12÷2 =6(平方厘米) 所以,這個(gè)三角形的面積是6平方厘米。 假設(shè)大圓的直徑為厘米,小圓的直徑為厘米。 大圓的周長(zhǎng):=(厘米) 小圓的周長(zhǎng):=(厘米) 大圓的周長(zhǎng)∶小圓的周長(zhǎng) =∶ =3∶2 大圓的面積: = = =(平方厘米) 小圓的面積: = =(平方厘米) 大圓的面積∶小圓的面積 =∶ =∶1 =(×4)∶(1×4) =9∶4 所以,周長(zhǎng)之比是3∶2,面積之比是9∶4。 【點(diǎn)睛】掌握三角形的面積以及圓的周長(zhǎng)和面積的計(jì)算公式是解答題目的關(guān)鍵。 6.大小兩個(gè)圓的半徑之比是4∶3,它們的周長(zhǎng)之比是( ),面積之比是( )。 【答案】 4∶3 16∶9 【分析】根據(jù)“大小兩個(gè)圓的半徑之比是4∶3”,可以設(shè)大圓的半徑是4,則小圓的半徑是3;然后根據(jù)圓的周長(zhǎng)公式C=2πr,圓的面積公式S=πr2,分別求出大圓、小圓的周長(zhǎng)和面積,再根據(jù)比的意義,寫出它們的周長(zhǎng)之比和面積之比,并化簡(jiǎn)比。 【詳解】設(shè)大圓的半徑是4,則小圓的半徑是3。 大圓的周長(zhǎng)是:2π×4=8π 小圓的周長(zhǎng)是:2π×3=6π 大圓與小圓的周長(zhǎng)之比是8π∶6π=4∶3; 大圓的面積是:2π×42=32π 小圓的周長(zhǎng)是:2π×32=18π 大圓與小圓的面積之比是32π∶18π=16∶9。 大小兩個(gè)圓的半徑之比是4∶3,它們的周長(zhǎng)之比是4∶3,面積之比是16∶9。 【點(diǎn)睛】明確兩個(gè)圓的周長(zhǎng)之比等于它們的半徑之比,兩個(gè)圓的面積之比等于它們的半徑的平方比。 7.如圖:大圓半徑為8厘米,小圓半徑為4厘米,則大圓與小圓的直徑之比是( ),周長(zhǎng)之比是( ),面積之比是( )?,F(xiàn)在讓小圓沿著大圓的外側(cè)滾動(dòng)一周后回到原處,那么小圓的圓心移動(dòng)的長(zhǎng)度是( )厘米。 【答案】 2∶1 2∶1 4∶1 75.36 【分析】根據(jù)圓的直徑d=2r,圓的周長(zhǎng)C=2πr,圓的面積S=πr2,可知兩個(gè)圓的直徑之比、周長(zhǎng)之比等于它們的半徑之比,兩個(gè)圓的面積之比等于它們的半徑的平方比。 從圖中可知,小圓的圓心移動(dòng)的長(zhǎng)度是以(8+4)厘米為半徑的圓的周長(zhǎng),根據(jù)圓的周長(zhǎng)C=2πr,代入數(shù)據(jù)計(jì)算即可求解。 【詳解】大圓與小圓的直徑之比是8∶4=(8÷4)∶(4÷4)=2∶1; 大圓與小圓的周長(zhǎng)之比是8∶4=(8÷4)∶(4÷4)=2∶1; 大圓與小圓的面積之比是82∶42=64∶16=(64÷16)∶(16÷16)=4∶1; 2×3.14×(8+4) =2×3.14×12 =75.36(厘米) 小圓的圓心移動(dòng)的長(zhǎng)度是75.36厘米。 【點(diǎn)睛】本題考查圓的直徑、周長(zhǎng)、面積公式的運(yùn)用以及比的意義、比的化簡(jiǎn)。 8.大圓的直徑是6厘米,小圓的半徑是2厘米,大圓和小圓的周長(zhǎng)之比是( ),大圓和小圓的面積之比是( )。 【答案】 3∶2 9∶4 【分析】設(shè)大圓的半徑為R,小圓的半徑為r,根據(jù)“圓的周長(zhǎng)=2πr”分別求出大圓和小圓的周長(zhǎng),進(jìn)而求比即可;根據(jù)“圓的面積=πr2”分別求出大圓的面積和小圓的面積,進(jìn)而根據(jù)題意求比即可。 【詳解】解:設(shè)大圓的半徑為R,小圓的半徑為r, 2πR∶2πr =(2πR÷2π)∶(2πr÷2π) =R∶r =3∶2 πR2∶πr2 =(πR2÷π)∶(πr2÷π) =R2∶r2 =32∶22 =9∶4 大圓周長(zhǎng)和小圓周長(zhǎng)的比是2∶3,大圓和小圓的面積比是9∶4。 【點(diǎn)睛】解答此題應(yīng)明確:兩個(gè)圓的半徑比,即周長(zhǎng)的比,面積比是半徑的平方的比。 9.已知小圓半徑是大圓半徑的,則小圓與大圓的周長(zhǎng)之比是( ),如果小圓面積是,則大圓面積是( )。 【答案】 1∶3 28.26 【分析】已知小圓半徑是大圓半徑的,利用比與分?jǐn)?shù)之間的關(guān)系,可得小圓和大圓的半徑之比是1∶3,根據(jù)圓的周長(zhǎng)=×2×半徑,因此兩個(gè)圓的周長(zhǎng)比等于這兩個(gè)圓的半徑比,即可求出小圓與大圓的周長(zhǎng)之比。再根據(jù)圓的面積=,因此兩個(gè)圓的面積比等于這兩個(gè)圓的半徑的平方比,可求得小圓和大圓的面積之比是1∶9,把小圓的面積看作1份,大圓的面積看作9份,用小圓的面積除以1,求出1份量是多少,再乘9即可求出大圓的面積。 【詳解】根據(jù)分析得,小圓和大圓的半徑之比是1∶3, 所以小圓與大圓的周長(zhǎng)之比是1∶3。 小圓與大圓的面積之比是12∶32=1∶9。 3.14÷1×9=28.26(cm2) 即大圓面積是28.26cm2。 【點(diǎn)睛】此題主要考查比的應(yīng)用以及圓的周長(zhǎng)、面積公式的熟練運(yùn)用。 10.?dāng)?shù)學(xué)課上,小明用邊長(zhǎng)8cm的正方形紙,小華用邊長(zhǎng)10cm的正方形紙,各剪了一個(gè)最大的圓,小明和小華所剪的圓的周長(zhǎng)之比是( ),面積之比是( )。 【答案】 4∶5 16∶25 【分析】正方形的邊長(zhǎng)為圓的直徑,根據(jù)圓的周長(zhǎng)公式:可知,圓的周長(zhǎng)之比等于半徑之比;根據(jù)圓的面積公式:可知,圓的面積之比等于半徑的平方之比。 【詳解】小明剪的圓的半徑為:8÷2=4(cm),小華剪的圓的半徑為:10÷2=5(cm); 所以小明和小華所剪的圓的周長(zhǎng)之比為:4∶5;小明和小華所剪的圓的面積之比為:=16∶25 【點(diǎn)睛】此題考查的是圓的面積公式和圓的周長(zhǎng)公式。 專項(xiàng)練習(xí)二:倍數(shù)關(guān)系問題。 11.如圖大圓的半徑等于小圓的直徑,那么,大圓的周長(zhǎng)是小圓的(??????)倍,而小圓的面積又是大圓的. 【答案】2; 【解析】略 12.小圓直徑為6厘米,大圓半徑為6厘米,大圓面積是小圓面積的( )倍。 【答案】4 【解析】略 13.一個(gè)圓的周長(zhǎng)擴(kuò)大5倍,直徑擴(kuò)大( )倍,面積擴(kuò)大( )。 【答案】 5 25 【詳解】略 14.下圖中,大圓周長(zhǎng)是小圓周長(zhǎng)的(????)倍,小圓面積是大圓面積的。 【答案】2; 【分析】假設(shè)小圓的直徑為2d,則大圓的直徑為4d,再根據(jù)“C=πd”、“S=πr2”分別求出兩個(gè)圓的周長(zhǎng)和面積,進(jìn)而解答即可。 【詳解】假設(shè)小圓的直徑為2d,則大圓的直徑為4d; 小圓周長(zhǎng):2dπ; 大圓周長(zhǎng):4dπ; 4dπ÷2dπ=2; 小圓面積:π(2d÷2)2=πd2; 大圓面積:π(4d÷2)2=4πd2; πd2÷4πd2= 【點(diǎn)睛】本題采用了假設(shè)法,假設(shè)法使題目變得具體化,簡(jiǎn)單化。一定要熟練掌握?qǐng)A的周長(zhǎng)和面積公式。 15.一個(gè)圓的直徑是16厘米,如果把它的直徑擴(kuò)大到原來的3倍,面積會(huì)擴(kuò)大到原來的( )倍。 【答案】9 【分析】依據(jù)S=πr2,分別求出原來圓的面積和擴(kuò)大后圓的面積,再相除即可解答。 【詳解】原來圓的面積π×2=64π 擴(kuò)大后圓的面積π×2=576π 576π÷64π=9 面積會(huì)擴(kuò)大到原來的9倍。 【點(diǎn)睛】一個(gè)圓,如果把它的直徑(半徑)擴(kuò)大到原來的a倍,面積會(huì)擴(kuò)大到原來的a2倍。 16.圓的周長(zhǎng)是直徑的( )倍.一個(gè)圓的半徑擴(kuò)大2倍,周長(zhǎng)擴(kuò)大( )倍,面積擴(kuò)大( )倍. 【答案】 π 2 4 【解析】略 17.甲圓的半徑是乙圓半徑的,那么甲圓的周長(zhǎng)是乙圓的,乙圓面積是甲圓的________倍。 【答案】????16 【詳解】根據(jù)圓的周長(zhǎng)和面積公式可知,圓的周長(zhǎng)公式:C=2πr,圓的面積公式:S=πr2??, 甲、乙兩個(gè)圓的半徑之比是x:y,則甲、乙兩個(gè)圓周長(zhǎng)的最簡(jiǎn)整數(shù)比是x:y,甲、乙兩個(gè)圓的面積的最簡(jiǎn)整數(shù)比是x2:y2??, 據(jù)此解答。 18.如果大圓的半徑等于小圓的直徑,則大圓半徑是小圓半徑的   倍。小圓的面積是大圓面積的。 【答案】2; 【詳解】設(shè)小圓的半徑為r,則大圓的半徑為2r, 2r÷r=2 小圓面積:大圓面積 =πr2∶[π×(2r)2] =πr2∶[4πr2] =1∶4; 如果大圓的半徑等于小圓的直徑,則大圓半徑是小圓半徑的2倍,小圓的面積是大圓面積的。 故答案為2、。 19.一個(gè)圓的直徑擴(kuò)大到原來的4倍,它的周長(zhǎng)擴(kuò)大到原來的( )倍,它的面積擴(kuò)大到原來的( )倍。 【答案】 4 16 【分析】假設(shè)出原來圓的直徑,利用“”表示出原來和現(xiàn)在圓的周長(zhǎng),利用“”表示出原來和現(xiàn)在圓的面積,最后求出圓的周長(zhǎng)和面積擴(kuò)大的倍數(shù),據(jù)此解答。 【詳解】假設(shè)原來圓的直徑是4厘米。 4×4=16(厘米) 周長(zhǎng):=4 面積: = = =16 所以,一個(gè)圓的直徑擴(kuò)大到原來的4倍,它的周長(zhǎng)擴(kuò)大到原來的4倍,它的面積擴(kuò)大到原來的16倍。 【點(diǎn)睛】掌握?qǐng)A的周長(zhǎng)和面積計(jì)算公式是解答題目的關(guān)鍵。 20.用圓規(guī)畫一個(gè)周長(zhǎng)31.4厘米的圓,圓規(guī)兩腳尖之間的距離是( )厘米。如果這個(gè)圓的半徑擴(kuò)大到原來的2倍,那么它的周長(zhǎng)擴(kuò)大到原來的( )倍,面積擴(kuò)大到原來的( )倍。 【答案】 5 2 4 【分析】半徑?jīng)Q定圓的大小,根據(jù)圓的周長(zhǎng)公式:C=2,那么r=C÷÷2,據(jù)此求出半徑,因?yàn)閳A周率一定,所以圓的周長(zhǎng)與半徑成正比例,圓的半徑擴(kuò)大到原來的幾倍,圓的周長(zhǎng)就擴(kuò)大到原來的幾倍;圓的面積的比等于半徑平方的比。據(jù)此解答。 【詳解】31.4÷3.14÷2 =10÷2 =5(厘米) 根據(jù)分析得,如果這個(gè)圓的半徑擴(kuò)大到原來的2倍,那么它的周長(zhǎng)擴(kuò)大到原來的2倍,面積擴(kuò)大到原來的2×2=4倍。 【點(diǎn)睛】此題主要考查圓的周長(zhǎng)公式、面積公式的靈活運(yùn)用,關(guān)鍵是熟記公式。 專項(xiàng)練習(xí)三:增減變化關(guān)系問題。 21.用籬笆圍一塊半徑4m的圓形地,這塊地的面積是( )m2;如果把這塊地的半徑增加1m,需要增加籬笆長(zhǎng)( )m。 【答案】 50.24 6.28 【分析】由題可知,籬笆圍了一塊圓形地,根據(jù)圓的面積=πr2,代入數(shù)據(jù),求出面積即可;再根據(jù)圓的周長(zhǎng)=2πd,計(jì)算半徑增加1m后圓的周長(zhǎng),求出大圓和小圓的周長(zhǎng)之差即可。 【詳解】3.14×4×4 =12.56×4 =50.24(m2) 這塊地的面積是50.24m2; 3.14×4×2 =12.56×2 =25.12(m) 3.14×(4+1)×2 =3.14×5×2 =15.7×2 =31.4(m) 31.4-25.12=6.28(m) 需要增加籬笆長(zhǎng)6.28m。 【點(diǎn)睛】熟練掌握?qǐng)A的面積和周長(zhǎng)計(jì)算公式是解題的關(guān)鍵。 22.一個(gè)圓形游樂園的直徑是12米。后來對(duì)游樂園進(jìn)行擴(kuò)建,半徑增加1米,面積增加了( )平方米。 【答案】40.82 【分析】先用直徑12米,根據(jù)公式:S=(d÷2)2π,計(jì)算出原來面積;再求出擴(kuò)建后的半徑長(zhǎng)度,再根據(jù)面積積公式:S=πr2,計(jì)算出新的面積,最后用兩個(gè)面積相減即可求出增加的面積;據(jù)此解答。 【詳解】12÷2=6(米) 62×3.14 =36×3.14 =113.04(平方米) 6+1=7(米) 72×3.14-113.04 =153.86-113.04 =40.82(平方米) 所以,面積增加了40.82平方米。 【點(diǎn)睛】此題考查了圓的面積計(jì)算,關(guān)鍵熟記計(jì)算公式。 23.一個(gè)圓的半徑是6厘米,它的周長(zhǎng)增加18.84厘米后,面積增加了( )平方厘米。 【答案】141.3 【分析】根據(jù)圓的半徑計(jì)算出原來圓的周長(zhǎng),現(xiàn)在圓的周長(zhǎng)=原來圓的周長(zhǎng)+18.84厘米,求出現(xiàn)在圓的半徑,最后利用求出增加部分的面積,據(jù)此解答。 【詳解】(3.14×6×2+18.84)÷3.14÷2 =(18.84×2+18.84)÷3.14÷2 =(37.68+18.84)÷3.14÷2 =56.52÷3.14÷2 =18÷2 =9(厘米) 3.14×(92-62) =3.14×(81-36) =3.14×45 =141.3(平方厘米) 所以,面積增加了141.3平方厘米。 【點(diǎn)睛】掌握?qǐng)A的周長(zhǎng)和環(huán)形的面積計(jì)算公式是解答題目的關(guān)鍵。 24.一個(gè)圓形花圃周長(zhǎng)是18.84米,現(xiàn)在要擴(kuò)建,將半徑增加2米,花圃的面積增加( )m2。 【答案】50.24 【分析】先求出內(nèi)圓的半徑,加上環(huán)寬,就是外圓的半徑,再利用圓環(huán)的面積公式:即可得解。 【詳解】(米),3+2=5(米) (平方米) 【點(diǎn)睛】此題的解題關(guān)鍵是掌握?qǐng)A環(huán)的面積計(jì)算方法。 25.一個(gè)半徑是3m的圓形花壇,改造后半徑增加1m,那么花壇面積增加( )。 【答案】21.98 【分析】圓的面積計(jì)算公式:S=。改造后半徑為4m,改造后的面積減去原面積就是增加的面積。 【詳解】3+1=4(m) 3.14×42-3.14×32 =3.14×16-3.14×9 =50.24-28.26 =21.98(m2) 【點(diǎn)睛】本題關(guān)鍵要掌握外圓的面積減去內(nèi)圓的就是圓環(huán)的面積,也就是增加的面積。 26.一個(gè)圓的半徑由2cm增加到3cm,周長(zhǎng)增加( )cm,面積增加( )cm2。 【答案】 6.28 15.7 【分析】圓的面積=,圓的周長(zhǎng)=,據(jù)此解答即可。 【詳解】周長(zhǎng)增加:2×3.14×(3-2) =6.28×1 =6.28(厘米) 面積增加:3.14×(32-22) =3.14×5 =15.7(平方厘米) 【點(diǎn)睛】本題考查圓的周長(zhǎng)、面積,解答本題的關(guān)鍵是掌握?qǐng)A的面積和周長(zhǎng)計(jì)算公式。 27.一個(gè)圓形花壇的周長(zhǎng)是18.84米,現(xiàn)在把它的半徑增加1倍,這個(gè)花壇面積增加( )平方米。 【答案】84.78 【分析】根據(jù)“r=c÷π÷2”求出原來的半徑,進(jìn)而求出增加1倍后的半徑,再根據(jù)“s=πr2”求出圓的前后面積,再相減。 【詳解】18.84÷3.14÷2 =6÷2 =3(米) 3.14×(3+3)2-3.14×32 =3.14×36-3.14×9 =84.78(平方米) 【點(diǎn)睛】熟練掌握?qǐng)A的周長(zhǎng)和面積公式是解答本題的關(guān)鍵。 28.兩個(gè)大小不一的圓,直徑都增加1,他們周長(zhǎng)和面積的比始終不變。( ) 【答案】× 【分析】假設(shè)兩個(gè)圓的直徑分別為2和3,變化后直徑分別為3和4,分別求出前后的周長(zhǎng)和面積比,進(jìn)行判斷。 【詳解】假設(shè)兩個(gè)圓的直徑分別為2和3,變化后直徑分別為3和4; 原來兩個(gè)圓的周長(zhǎng)比為:2π∶3π=2∶3; 后來兩個(gè)圓的周長(zhǎng)比為:3π∶4π=3∶4,周長(zhǎng)比發(fā)生變化; 原來兩個(gè)圓的面積比為(2÷2)2π∶(3÷2)2π=4∶9; 后來兩個(gè)圓的面積比為(3÷2)2π∶(4÷2)2π=9∶16,面積比也發(fā)生變化; 故答案為:×。 【點(diǎn)睛】本題采用了假設(shè)法,使題目具體化,簡(jiǎn)單化,熟記圓的周長(zhǎng)和面積公式。 29.一個(gè)圓直徑由5厘米增加到10厘米,周長(zhǎng)增加( )厘米,面積增加( )厘米2。 【答案】 15.7 235.5 【分析】(1)圓的周長(zhǎng)計(jì)算公式是C=2πr,如果半徑增加n厘米,根據(jù)周長(zhǎng)的計(jì)算公式可知周長(zhǎng)增加2nπ,列式進(jìn)行計(jì)算即可; (2)根據(jù)題意可知,增加的部分是環(huán)形,由環(huán)形的面積=外圓面積-內(nèi)圓面積.把數(shù)據(jù)代入公式解答。 【詳解】(1)3.14×2×(10-5) =3.14×5 =15.7(厘米) (2)3.14×(102-52) =3.14×(100-25) =3.14×75 =235.5(平方厘米) 【點(diǎn)睛】本題考查圓的周長(zhǎng)、面積的計(jì)算,解答此題應(yīng)注意在圓中,如果是圓的半徑增加n,則其周長(zhǎng)增加2nπ,周長(zhǎng)增加的值與原來圓的半徑大小無關(guān)。 30.一個(gè)圓的半徑是3厘米,它的面積是( )平方厘米,如果它的半徑增加2厘米,那么它的面積增加( )平方厘米。 【答案】 28.26 50.24 【分析】根據(jù)“s=πr2”求出圓的面積;由題意可知,求面積增加多少平方厘米就是求圓環(huán)的面積,先求出大圓的半徑,即3+2,再根據(jù)“S環(huán)形=π(R2-r2)”進(jìn)行解答即可。 【詳解】3.14×32=28.26(平方厘米); 3+2=5(厘米); 3.14×(52-32) =3.14×16 =50.24(平方厘米) 【點(diǎn)睛】熟練掌握?qǐng)A和圓環(huán)的面積公式是解答本題的關(guān)鍵。

    英語朗讀寶
    資料下載及使用幫助
    版權(quán)申訴
    • 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯(cuò)誤問題請(qǐng)聯(lián)系客服,如若屬實(shí),我們會(huì)補(bǔ)償您的損失
    • 2.壓縮包下載后請(qǐng)先用軟件解壓,再使用對(duì)應(yīng)軟件打開;軟件版本較低時(shí)請(qǐng)及時(shí)更新
    • 3.資料下載成功后可在60天以內(nèi)免費(fèi)重復(fù)下載
    版權(quán)申訴
    若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
    入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
    版權(quán)申訴二維碼
    小學(xué)數(shù)學(xué)北師大版(2024)六年級(jí)上冊(cè)電子課本

    單元綜合與測(cè)試

    版本: 北師大版(2024)

    年級(jí): 六年級(jí)上冊(cè)

    切換課文
    • 同課精品
    • 所屬專輯26份
    • 課件
    • 教案
    • 試卷
    • 學(xué)案
    • 更多
    歡迎來到教習(xí)網(wǎng)
    • 900萬優(yōu)選資源,讓備課更輕松
    • 600萬優(yōu)選試題,支持自由組卷
    • 高質(zhì)量可編輯,日均更新2000+
    • 百萬教師選擇,專業(yè)更值得信賴
    微信掃碼注冊(cè)
    qrcode
    二維碼已過期
    刷新

    微信掃碼,快速注冊(cè)

    手機(jī)號(hào)注冊(cè)
    手機(jī)號(hào)碼

    手機(jī)號(hào)格式錯(cuò)誤

    手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

    手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

    設(shè)置密碼

    6-20個(gè)字符,數(shù)字、字母或符號(hào)

    注冊(cè)即視為同意教習(xí)網(wǎng)「注冊(cè)協(xié)議」「隱私條款」
    QQ注冊(cè)
    手機(jī)號(hào)注冊(cè)
    微信注冊(cè)

    注冊(cè)成功

    返回
    頂部
    添加客服微信 獲取1對(duì)1服務(wù)
    微信掃描添加客服