



所屬成套資源:2024-2025學(xué)年八年級(jí)數(shù)學(xué)上冊(cè)基礎(chǔ)知識(shí)專項(xiàng)突破講與練(人教版)
- 專題11.7 多邊形及其內(nèi)角和(知識(shí)梳理與考點(diǎn)分類講解)-2024-2025學(xué)年八年級(jí)數(shù)學(xué)上冊(cè)基礎(chǔ)知識(shí)專項(xiàng)突破講與練(人教版) 試卷 0 次下載
- 專題11.8 多邊形及其內(nèi)角和(精選精練)(專項(xiàng)練習(xí))-2024-2025學(xué)年八年級(jí)數(shù)學(xué)上冊(cè)基礎(chǔ)知識(shí)專項(xiàng)突破講與練(人教版) 試卷 0 次下載
- 第11章 三角形(單元測(cè)試·基礎(chǔ)卷)-2024-2025學(xué)年八年級(jí)數(shù)學(xué)上冊(cè)基礎(chǔ)知識(shí)專項(xiàng)突破講與練(人教版) 試卷 0 次下載
- 專題11.3 三角形三條重要線段(知識(shí)梳理與考點(diǎn)分類講解)-2024-2025學(xué)年八年級(jí)數(shù)學(xué)上冊(cè)基礎(chǔ)知識(shí)專項(xiàng)突破講與練(人教版) 試卷 0 次下載
- 專題11.4 三角形三條重要線段(精選精練)(專項(xiàng)練習(xí))-2024-2025學(xué)年八年級(jí)數(shù)學(xué)上冊(cè)基礎(chǔ)知識(shí)專項(xiàng)突破講與練(人教版) 試卷 0 次下載
第11章 三角形(單元測(cè)試·培優(yōu)卷)-2024-2025學(xué)年八年級(jí)數(shù)學(xué)上冊(cè)基礎(chǔ)知識(shí)專項(xiàng)突破講與練(人教版)
展開
這是一份第11章 三角形(單元測(cè)試·培優(yōu)卷)-2024-2025學(xué)年八年級(jí)數(shù)學(xué)上冊(cè)基礎(chǔ)知識(shí)專項(xiàng)突破講與練(人教版),共27頁。
第11章 三角形(單元測(cè)試·培優(yōu)卷)
一、單選題(本大題共10小題,每小題3分,共30分)
1.如圖,自行車的主要結(jié)構(gòu)設(shè)計(jì)成三角形,其依據(jù)是(????)
??
A.兩點(diǎn)之間線段最短 B.三角形的內(nèi)角和是180°
C.節(jié)省材料 D.三角形的穩(wěn)定性
2.以下列各組線段為邊,能組成三角形的是(????)
A.3、3、7 B.4、5、9 C.7、12、17 D.5、8、15
3.如圖,的三邊長(zhǎng)均為整數(shù),且周長(zhǎng)為24,是邊上的中線,的周長(zhǎng)比的周長(zhǎng)大3,則長(zhǎng)的可能值有(????)個(gè).
??
A.7 B.5 C.6 D.4
4.如圖,在中,,為的中點(diǎn),連接并延長(zhǎng),交于點(diǎn),過點(diǎn)作于點(diǎn),延長(zhǎng)交于點(diǎn).下面說法錯(cuò)誤的是(????)
??
A.是的角平分線 B.是的邊上的高線
C.是的角平分線和高線 D.是的邊上的中線
5.如圖,在中,的三等分線、與的三等分線、分別交于點(diǎn)D、E,若,則的度數(shù)為( )
A. B. C. D.
6.如圖,在中,,,,,連接,,則的度數(shù)是(????)
??
A. B. C. D.
7.如圖,長(zhǎng)方形紙片,點(diǎn)、分別在邊、上,連接,分別將,對(duì)折,使、分別落在直線上的點(diǎn)和處,折痕分別為、,若,則的度數(shù)為(????)
A. B. C. D.
8.兩個(gè)直角三角板如圖擺放,其中,,.若,則的度數(shù)為(????)
A. B. C. D.
9.如圖,在中,平分,點(diǎn)E在的延長(zhǎng)線上,過點(diǎn)E作于點(diǎn)F.若,則的度數(shù)為(????)
A. B. C. D.
10.如圖1,2,3.,,,則的度數(shù)為(????)
A. B. C. D.
二、填空題(本大題共8小題,每小題4分,共32分)
11.如果一個(gè)正n多邊形的內(nèi)角和是它外角和的兩倍,則n的值為.
12.已知,,為的三邊長(zhǎng),,滿足,且為方程的解,則的周長(zhǎng)為.
13.如圖,,平分,平分,則°.
14.如圖,在三角形中,點(diǎn)D,H,E分別是邊,,上的點(diǎn),連接,,F(xiàn)為上一點(diǎn),連接,若,,.則的度數(shù)為.
15.如圖,已知,,點(diǎn)為平面內(nèi)一點(diǎn),于,過點(diǎn)作于點(diǎn),點(diǎn)、點(diǎn)在上,連接、、,平分,平分,若,,則的度數(shù)為.
16.如圖,在中,為中線,E為上一點(diǎn),,連接與交于點(diǎn)O,若的面積為18,則的面積為.
17.如圖,中,,點(diǎn)F是邊上一點(diǎn),點(diǎn)E在邊上運(yùn)動(dòng),將沿直線翻折得到,連接,當(dāng)時(shí),則.
18.如圖,在中,為的外角,與的平分線交于點(diǎn)與的平分線交于點(diǎn)與的平分線相交于點(diǎn),當(dāng)兩條角平分線無交點(diǎn)時(shí),則的值為.
三、解答題(本大題共6小題,共58分)
19.(8分)已知如圖,,.
(1)試判斷與的位置關(guān)系,并說明理由;
(2)若于點(diǎn),若平分,,求的度數(shù).
20.(8分)如圖,在中,、分別為的中線和高,為的角平分線.
(1)若的面積是24,則的長(zhǎng)是;
(2)若,,求的度數(shù).
21.(10分)在中,,D為直線上任意一點(diǎn),連結(jié),于點(diǎn)E,于點(diǎn)F.
【畫圖】(1)如圖①,當(dāng)點(diǎn)D在邊上時(shí),請(qǐng)畫出中邊上的高;
【探究】(2)如圖①,通過觀察、測(cè)量,你猜想之間的數(shù)量關(guān)系為__________;為了說明之間的數(shù)關(guān)系,小明是這樣做的:
證明:∵_(dá)_________,
∴__________.
∵,∴__________.
【運(yùn)用】(3)如圖②,當(dāng)點(diǎn)D為中點(diǎn)時(shí),試判斷與的數(shù)量關(guān)系,并說明理由.
【拓展】(4)如圖③,當(dāng)點(diǎn)D在的延長(zhǎng)線上時(shí),請(qǐng)直接寫出之間的數(shù)量關(guān)系.
22.(10分)如圖,在四邊形中,,.
(1)如圖1,若,則________度;
(2)如圖2,若的平分線交于點(diǎn),且,試求出的度數(shù);
(3)①如圖3.若和的平分線交于點(diǎn),試求出的度數(shù);
②如圖4,為五邊形內(nèi)一點(diǎn):,分別平分,,請(qǐng)直接寫出與的數(shù)量關(guān)系.
23.(10分)如圖,在中,,,,點(diǎn)是的中點(diǎn),動(dòng)點(diǎn)從點(diǎn)出發(fā),先以每秒的速度沿運(yùn)動(dòng),然后以的速度沿運(yùn)動(dòng).若設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間是秒,那么當(dāng)取何值時(shí),的面積等于10?
24.(12分)綜合與探究
【問題發(fā)現(xiàn)】
在延時(shí)服務(wù)課上,數(shù)學(xué)張老師引導(dǎo)大家探究角平分線的夾角問題.
(1)數(shù)學(xué)課代表發(fā)現(xiàn)在圖1中,若與的平分線交于點(diǎn)P,則與之間存在一定的數(shù)量關(guān)系,下面是不完整的探究過程,請(qǐng)補(bǔ)充完整.
【問題探究】
(2)如圖2,在(1)的條件下,作的外角,的平分線交于點(diǎn)Q,試說明.
【問題拓展】
(3)如圖3,在(2)的條件下,延長(zhǎng)線段,交于點(diǎn)E,在中.
①請(qǐng)說明與之間的數(shù)量關(guān)系.
②當(dāng)與兩銳角存在2倍的數(shù)量關(guān)系時(shí),直接寫出的度數(shù).
,分別是和的平分線,
,.
,
,
……參考答案:
1.D
【分析】本題考查生活中數(shù)學(xué)知識(shí)的應(yīng)用,熟記三角形的穩(wěn)定性是解決問題的關(guān)鍵.
【詳解】解:自行車的主要結(jié)構(gòu)設(shè)計(jì)成三角形,其依據(jù)是三角形的穩(wěn)定性,
故選:D.
2.C
【分析】根據(jù)兩邊之和大于第三邊,兩邊之差小于第三邊,判斷即可.
【詳解】解:A、,不滿足三角形的三邊的基本關(guān)系,故該選項(xiàng)錯(cuò)誤;
B、,不滿足三角形的三邊的基本關(guān)系,故該選項(xiàng)錯(cuò)誤;
C、,滿足三角形的三邊的基本關(guān)系,故該選項(xiàng)正確;
D、,不滿足三角形的三邊的基本關(guān)系,故該選項(xiàng)錯(cuò)誤;
故選:C.
【點(diǎn)撥】本題考查對(duì)三角形的三邊的基本關(guān)系的理解和運(yùn)用,熟記知識(shí)點(diǎn)是關(guān)鍵.
3.D
【分析】依據(jù)的周長(zhǎng)為24,的周長(zhǎng)比的周長(zhǎng)大3,可得,再根據(jù)的三邊長(zhǎng)均為整數(shù),即可得到整數(shù)值.
【詳解】解:是邊上的中線,
,
的周長(zhǎng)為24,的周長(zhǎng)比的周長(zhǎng)大3,
,
解得,
又的三邊長(zhǎng)均為整數(shù),的周長(zhǎng)比的周長(zhǎng)大3,
為整數(shù),
邊長(zhǎng)為奇數(shù),
,7,9,11,
即的長(zhǎng)可能值有4個(gè),
故選:D.
【點(diǎn)撥】本題主要考查了三角形三邊關(guān)系的運(yùn)用,解題時(shí)注意:三角形兩邊之和大于第三邊,三角形的兩邊之差小于第三邊.
4.D
【分析】根據(jù)三角形的中線、角平分線、高的定義進(jìn)行判斷即可.
【詳解】解:A.,則是的角平分線,故選項(xiàng)正確,不符合題意;
B.于點(diǎn),則是的邊上的高線,故選項(xiàng)正確,不符合題意;
C.,于點(diǎn),則是的角平分線和高線,故選項(xiàng)正確,不符合題意;
D.無法判斷是的邊上的中線,故選項(xiàng)錯(cuò)誤,符合題意.
故選:D.
【點(diǎn)撥】此題考查了三角形的中線、角平分線、高,熟練掌握三角形的中線、角平分線、高的定義是解題的關(guān)鍵.
5.B
【分析】本題考查三角形的內(nèi)角和定理,角平分線的定義,解題的關(guān)鍵是掌握三角形的內(nèi)角和定理,角平分線的定義;
根據(jù)三角形內(nèi)角和定理求出,再根據(jù)三等分線求出可解答.
【詳解】解:∵,
的三等分線、與的三等分線、分別交于點(diǎn)D、E,,
,,
∴
∵在中,°,
∴,
故選:B.
6.A
【分析】延長(zhǎng)交于點(diǎn),根據(jù),利用三角形和為,求得,再根據(jù),可得出,再根據(jù)求得.
【詳解】解:如圖,延長(zhǎng)交于點(diǎn),
??
,,
,
,
,
,
,
故選:A.
【點(diǎn)撥】本題考查三角形內(nèi)角和定理,平行線的性質(zhì),作出輔助線是解決本題的關(guān)鍵.
7.C
【分析】此題主要考查了圖形的折疊變換及性質(zhì),設(shè),由折疊的性質(zhì)得:,,則,,再由平角的定義得,則,由此解出即可得出的度數(shù).
【詳解】解:設(shè),
由折疊的性質(zhì)得:,,
,,
,
,
解得:,
.
故選:C.
8.B
【分析】本題考查了平行線的性質(zhì),直角三角形中兩銳角互余的性質(zhì),熟練掌握其內(nèi)容是解題的關(guān)鍵.由,可得,根據(jù),可得,而,由此可求出.
【詳解】解:,,
,
,
,
,
.
故選:B.
9.C
【分析】本題考查了三角形外角的性質(zhì),角平分線的定義,直角三角形兩銳角互余,熟練掌握以上知識(shí)是解題的關(guān)鍵.根據(jù)垂直的定義得出,再根據(jù)外角的性質(zhì)得出,根據(jù)角平分線的性質(zhì)得出,最后根據(jù)三角形的外角的性質(zhì)得出結(jié)果.
【詳解】解:,
,
,
,
,
平分,
,
故選:C
10.C
【分析】本題考查三角形內(nèi)角和定理以及三角形的外角性質(zhì),
圖1:根據(jù)三角形內(nèi)角和定理求出的度數(shù),繼而得出的度數(shù),再根據(jù)三角形內(nèi)角和定理即可求出的度數(shù);圖2:利用三角形的外角性質(zhì)并結(jié)合,,得出及,即可求出的度數(shù);圖3:利用三角形外角的性質(zhì)并結(jié)合,,得出的度數(shù),根據(jù)三角形內(nèi)角和定理即可求出的度數(shù),即可求出結(jié)論.利用三角形內(nèi)角和定理及三角形的外角性質(zhì)求出,,的度數(shù)是解題的關(guān)鍵.
【詳解】解:圖1:
∵在中,,
∴,
∵,,
∴,,
∴,
∴;
圖2:
∵是的外角,,
∴,
∵,,
∴,
∵是的外角,
∴,
∴;
圖3:
∵是的外角,是的外角,,
∴,,
∴
,
又∵,,
∴,,
∴,
∴,
∴.
故選:C.
11.6
【分析】此題考查了多邊形內(nèi)角和與外角和,根據(jù)多邊形內(nèi)角和公式和多邊形外角和為,可列方程,再解方程即可.
【詳解】解:依題意,,
解得:,
故答案為:6.
12.9
【分析】利用絕對(duì)值的性質(zhì)以及偶次方的性質(zhì)得出、的值,再解絕對(duì)值方程可得或,進(jìn)而利用三角形三邊關(guān)系得出a的值,進(jìn)而求出的周長(zhǎng).
【詳解】解:∵,
∴且,
∴、,
∵a為方程的解,
∴或,
又,
∴,
則的周長(zhǎng)為,
故答案為:9.
【點(diǎn)撥】此題主要考查了三角形三邊關(guān)系以及絕對(duì)值的性質(zhì)和偶次方的性質(zhì),得出a的值是解題關(guān)鍵.
13.90
【分析】先根據(jù)平行線性質(zhì)得出,再根據(jù)角平分線定義進(jìn)行求解即可.
【詳解】∵
∴
∵平分,平分
∴
∴
故填:90.
【點(diǎn)撥】本題考查平行線性質(zhì)和角平分線定義,熟練掌握性質(zhì)是關(guān)鍵.
14.
【分析】由,,得到,根據(jù)平行線的判定,得到,根據(jù)平行線的性質(zhì),得到,根據(jù)三角形內(nèi)角和定理,求出的度數(shù),即可求解,
本題考查了,平行線的性質(zhì)與判定,三角形內(nèi)角和定理,解題的關(guān)鍵是:熟練掌握相關(guān)性質(zhì)定理.
【詳解】解:∵,,
∴,
∴,
∴,
∵,
∴,
故答案為:.
15./81度
【分析】本題主要考查了平行線的性質(zhì)的運(yùn)用,解決問題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯(cuò)角,運(yùn)用等角的余角(補(bǔ)角)相等進(jìn)行推導(dǎo).余角和補(bǔ)角計(jì)算的應(yīng)用,常常與等式的性質(zhì)、等量代換相關(guān)聯(lián).解題時(shí)注意方程思想的運(yùn)用.先過點(diǎn)B作,根據(jù)角平分線的定義,得出,再設(shè),根據(jù),可得,根據(jù),可得,最后解方程組即可得到,,進(jìn)而得出結(jié)論.
【詳解】解:過點(diǎn)B作,如圖:
∵,
∴,即,
又∵,
∴,
∴,
∵平分,平分,
∴,
∴,
設(shè),
則,
∴,
∵,
∴,
中,由,
可得①,
由,
可得②,
由①②聯(lián)立方程組,
解得,
∴.
故答案為:.
16.
【分析】本題主要考查了三角形中線的性質(zhì),面積與等積變換,等底等高的三角形面積相等,正確分析三角形各部分之間的關(guān)系是解題的關(guān)鍵.
首先根據(jù)三角形中線的性質(zhì)和得到,,設(shè),然后表示出,,然后根據(jù)列方程求解即可.
【詳解】連接
∵在中,為中線,的面積為18,
∴
∵
∴,
設(shè),則,,
∴,
∵為中線,
∴
∴
解得
∴.
故答案為:.
17.或
【分析】本題主要考查了圖形的翻折,三角形內(nèi)角和定理,解題關(guān)鍵是分情況討論.
如圖1,由,,得,,得,即可得;如圖2,同理得.
【詳解】解:如圖1,由,,
得,,
得,
得;
如圖2,同理,,
得,
得;
故答案為:或.
18.3
【分析】本題考查圖形變化的規(guī)律,三角形內(nèi)角和定理及整體思想的運(yùn)用是解題的關(guān)鍵.利用整體思想結(jié)合三角形的內(nèi)角和定理即可依次求出的度數(shù),根據(jù)發(fā)現(xiàn)的規(guī)律即可解決問題.
【詳解】,
,
,
又 和 分別平分和,
,,
,
,
和 分別平分 和
,
,
,
,
同理可得,
,
,
,
∴無法組成三角形,即兩條角平分線無交點(diǎn),
故的值為.
故答案為: .
19.(1),理由見解析
(2)
【分析】此題考查了平行線的性質(zhì)和判定,角平分線的概念,直角三角形兩銳角互余,
(1)根據(jù)平行線的性質(zhì)和判定求解即可;
(2)首先根據(jù)平行線的性質(zhì)得到,然后由角平分線的概念得到,然后利用直角三角形兩銳角互余求解即可.
【詳解】(1),理由如下:
∵
∴
∵
∴
∴;
(2)∵,
∴
∵平分,
∴
∵
∴.
20.(1)12
(2)
【分析】此題主要考查了三角形的中線、高和角平分線,三角形的內(nèi)角定理和外角定理,理解三角形的中線、高和角平分線,熟練掌握三角形的內(nèi)角定理和外角定理是解決問題的關(guān)鍵.
(1)根據(jù)的面積是24得,進(jìn)而得,再根據(jù)為的中線可得的長(zhǎng);
(1)先根據(jù)三角形外角定理得,進(jìn)而根據(jù)角平分線定義得,然后在中可求出,繼而可得的度數(shù).
【詳解】(1)為的高,的面積是24,,
,
即,
,
為的中線,
,
故答案為:12.
(2)是的外角,
,
,,
,
為的角平分線,
,
在中,,
,
.
21.(1)見詳解;(2),,,;(3)與的數(shù)量關(guān)系為,理由見解析;(4)
【分析】本題考查了中線平分三角形的面積,割補(bǔ)法求三角形的面積.
(1)過點(diǎn)B作交于一點(diǎn)E,即可作答.
(2),根據(jù)已有的過程結(jié)合面積之間的關(guān)系列式化簡(jiǎn),即可作答.
(3)同理得,因?yàn)辄c(diǎn)D為中點(diǎn),所以,結(jié)合,化簡(jiǎn)得,即可作答.
(4)同理結(jié)合面積之間的關(guān)系列式化簡(jiǎn),,即可作答.
【詳解】解:(1)依題意,邊上的高如圖所示:
(2);
證明:∵,
∴,
∵,
∴;
(3)過點(diǎn)B作交于一點(diǎn)G,
∵,
∴,
∵點(diǎn)D為中點(diǎn),
∴,
∵,
∴;
∵,,
∴,
∴,
(4)過點(diǎn)B作交于一點(diǎn),
∵,
∴,
∵,
∴,
則,
22.(1)65
(2)
(3)①,②,理由見解析
【分析】本題考查了多邊形的內(nèi)角和定理、角平分線的定義,熟練掌握以上知識(shí)點(diǎn)并靈活運(yùn)用是解此題的關(guān)鍵.
(1)根據(jù)四邊形內(nèi)角和為,結(jié)合已知條件求解即可;
(2)根據(jù)平行線的性質(zhì)得到的度數(shù),再根據(jù)角平分線的定義得到的度數(shù),進(jìn)一步根據(jù)四邊形內(nèi)角和定理計(jì)算即可得出答案;
(3)①先根據(jù)四邊形的內(nèi)角和定理得出,由角平分線的定義得出,再根據(jù)三角形內(nèi)角和定理計(jì)算即可得出答案;②由五邊形的內(nèi)角和定理得出,由角平分線的定義得出,即可得出答案.
【詳解】(1)解:,,,
,
故答案為:;
(2)解:,
,
∴,
∵的平分線交于點(diǎn),
∴,
∴;
(3)解:四邊形中,
∴,
∵和的平分線交于點(diǎn),
∴,,
∴,
∴;
②∵五邊形的內(nèi)角和為,
∴,
∵和的平分線交于點(diǎn),
∴,,
∴,
∴.
23.或或
【分析】本題考查了直角三角形的性質(zhì)的運(yùn)用,三角形的面積公式的運(yùn)用,解答時(shí)靈活運(yùn)用三角形的面積公式求解是關(guān)鍵.分為兩種情況討論:當(dāng)點(diǎn)在上時(shí):當(dāng)點(diǎn)在上時(shí),根據(jù)三角形的面積公式建立方程求出其解即可.
【詳解】解:如圖1,當(dāng)點(diǎn)在上,
中,,,,點(diǎn)是的中點(diǎn),
,.
的面積等于10,
,
,
即,
.
如圖2,當(dāng)點(diǎn)在上,
是的中點(diǎn),
.
,
,
當(dāng)點(diǎn)P在點(diǎn)E的左邊時(shí),,
當(dāng)點(diǎn)P在點(diǎn)E的右邊時(shí),.
綜上所述,當(dāng)或或時(shí),的面積會(huì)等于10,
故答案為或或.
24.(1)證明見解析;(2)證明見解析;(3)①,②或
【分析】本題考查了角平分線的定義.三角形的外角性質(zhì)與內(nèi)角和定理,熟記三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和是解題的關(guān)鍵.
(1)先根據(jù)角平分線的性質(zhì)得出,,在有三角形內(nèi)角和定理得出,利用等量代換即可得出結(jié)論;
(2)先根據(jù)角平分線的性質(zhì)得出,,再由三角形的外角的性質(zhì)即可得出結(jié)論;
(3)①先根據(jù)角平分線的性質(zhì)得,,
,再根據(jù)三角形的內(nèi)角和定理得出根據(jù),即可得出結(jié)論;②延長(zhǎng)至點(diǎn)F,根據(jù)角平分線的定理得出,然后分、和兩種情況討論即可得出結(jié)論;
【詳解】[問題發(fā)現(xiàn)]
(1),分別是和的平分線,
,,
,
,
,
,
;
[問題探究]
(2),分別是,的平分線,
,,
,,
,,
,
,
,
由(1)知,
,
[問題拓展]
(3)①是的平分線,是的平分線,
,,
,
,
,
由(2)知,
;
②延長(zhǎng)至點(diǎn)F,
是的外角的平分線,
是的外角的平分線,
,
是的平分線,
,
即,
,
即,,
,
在中,與都是銳角,
當(dāng)時(shí),
,
,
,
,
當(dāng)時(shí)
,
,
,
,
綜上所述,的度數(shù)為 或 .

- 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯(cuò)誤問題請(qǐng)聯(lián)系客服,如若屬實(shí),我們會(huì)補(bǔ)償您的損失
- 2.壓縮包下載后請(qǐng)先用軟件解壓,再使用對(duì)應(yīng)軟件打開;軟件版本較低時(shí)請(qǐng)及時(shí)更新
- 3.資料下載成功后可在60天以內(nèi)免費(fèi)重復(fù)下載