



所屬成套資源:人教版九年級數(shù)學(xué)下冊同步特訓(xùn)
- 人教版九年級數(shù)學(xué)下冊第二十七章《相似——相似三角形》同步檢測2附答案(1) 試卷 0 次下載
- 人教版九年級數(shù)學(xué)下冊第二十七章《相似——相似三角形》同步檢測3附答案 試卷 0 次下載
- 人教版九年級數(shù)學(xué)下冊第二十八章《銳角三角函數(shù)——解直角三角形及其應(yīng)用》同步檢測1附答案 試卷 0 次下載
- 人教版九年級數(shù)學(xué)下冊第二十八章《銳角三角函數(shù)——解直角三角形及其應(yīng)用》同步檢測2附答案 試卷 0 次下載
- 人教版九年級數(shù)學(xué)下冊第二十八章《銳角三角函數(shù)——解直角三角形及其應(yīng)用》同步檢測3附答案 試卷 0 次下載
人教版九年級數(shù)學(xué)下冊第二十七章《相似——相似三角形》同步檢測4附答案
展開
這是一份人教版九年級數(shù)學(xué)下冊第二十七章《相似——相似三角形》同步檢測4附答案,共44頁。
人教版九年級數(shù)學(xué)下冊第二十七章《相似——相似三角形》同步檢測4附答案
一.選擇題(共10小題)
1.(2013?自貢)如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于E,交DC的延長線于F,BG⊥AE于G,BG=,則△EFC的周長為( ?。?
2.(2013?重慶)如圖,在平行四邊形ABCD中,點E在AD上,連接CE并延長與BA的延長線交于點F,若AE=2ED,CD=3cm,則AF的長為( ?。?
3.(2013?孝感)如圖,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC內(nèi)依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.則EF等于( )
4.(2013?咸寧)如圖,正方形ABCD是一塊綠化帶,其中陰影部分EOFB,GHMN都是正方形的花圃.已知自由飛翔的小鳥,將隨機落在這塊綠化帶上,則小鳥在花圃上的概率為( ?。?
5.(2013?綏化)如圖,點A,B,C,D為⊙O上的四個點,AC平分∠BAD,AC交BD于點E,CE=4,CD=6,則AE的長為( ?。?
6.(2013?內(nèi)江)如圖,在?ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,S△DEF:S△ABF=4:25,則DE:EC=( ?。?
7.(2013?黑龍江)如圖,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于點E,在BC上截取BF=AE,連接AF交CE于點G,連接DG交AC于點H,過點A作AN⊥BC,垂足為N,AN交CE于點M.則下列結(jié)論;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正確的個數(shù)是( ?。?
8.(2013?恩施州)如圖所示,在平行四邊形ABCD中,AC與BD相交于點O,E為OD的中點,連接AE并延長交DC于點F,則DF:FC=( ?。?
9.(2013?德陽)如圖,在⊙O上有定點C和動點P,位于直徑AB的異側(cè),過點C作CP的垂線,與PB的延長線交于點Q,已知:⊙O半徑為,tan∠ABC=,則CQ的最大值是( ?。?
10.(2012?岳陽)如圖,AB為半圓O的直徑,AD、BC分別切⊙O于A、B兩點,CD切⊙O于點E,AD與CD相交于D,BC與CD相交于C,連接OD、OC,對于下列結(jié)論:①OD2=DE?CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD?OA;⑤∠DOC=90°,其中正確的是( ?。?
二.填空題(共10小題)
11.(2013?昭通)如圖,AB是⊙O的直徑,弦BC=4cm,F(xiàn)是弦BC的中點,∠ABC=60°.若動點E以1cm/s的速度從A點出發(fā)在AB上沿著A→B→A運動,設(shè)運動時間為t(s)(0≤t<16),連接EF,當(dāng)△BEF是直角三角形時,t(s)的值為 _________ .(填出一個正確的即可)
12.(2013?南通)如圖,在?ABCD中,AB=6cm,AD=9cm,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,BG=4cm,則EF+CF的長為 _________ cm.
13.(2013?菏澤)如圖所示,在△ABC中,BC=6,E、F分別是AB、AC的中點,動點P在射線EF上,BP交CE于D,∠CBP的平分線交CE于Q,當(dāng)CQ=CE時,EP+BP= _________ .
14.(2013?巴中)如圖,小明在打網(wǎng)球時,使球恰好能打過網(wǎng),而且落在離網(wǎng)4米的位置上,則球拍擊球的高度h為 _________ .
15.(2012?自貢)正方形ABCD的邊長為1cm,M、N分別是BC、CD上兩個動點,且始終保持AM⊥MN,當(dāng)BM= _________ cm時,四邊形ABCN的面積最大,最大面積為 _________ cm2.
16.(2012?宜賓)如圖,在⊙O中,AB是直徑,點D是⊙O上一點,點C是的中點,弦CE⊥AB于點F,過點D的切線交EC的延長線于點G,連接AD,分別交CF、BC于點P、Q,連接AC.給出下列結(jié)論:
①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心;④AP?AD=CQ?CB.
其中正確的是 _________?。▽懗鏊姓_結(jié)論的序號).
17.(2012?泉州)在△ABC中,P是AB上的動點(P異于A、B),過點P的直線截△ABC,使截得的三角形與△ABC相似,我們不妨稱這種直線為過點P的△ABC的相似線,簡記為P(lx)(x為自然數(shù)).
(1)如圖①,∠A=90°,∠B=∠C,當(dāng)BP=2PA時,P(l1)、P(l2)都是過點P的△ABC的相似線(其中l(wèi)1⊥BC,l2∥AC),此外,還有 _________ 條;
(2)如圖②,∠C=90°,∠B=30°,當(dāng)= _________ 時,P(lx)截得的三角形面積為△ABC面積的.
18.(2012?嘉興)如圖,在Rt△ABC中,∠ABC=90°,BA=BC.點D是AB的中點,連接CD,過點B作BG丄CD,分別交CD、CA于點E、F,與過點A且垂直于AB的直線相交于點G,連接DF.給出以下四個結(jié)論:
①;
②點F是GE的中點;
③AF=AB;
④S△ABC=5S△BDF,其中正確的結(jié)論序號是 _________ .
19.(2012?瀘州)如圖,n個邊長為1的相鄰正方形的一邊均在同一直線上,點M1,M2,M3,…Mn分別為邊B1B2,B2B3,B3B4,…,BnBn+1的中點,△B1C1M1的面積為S1,△B2C2M2的面積為S2,…△BnCnMn的面積為Sn,則Sn= _________?。ㄓ煤琻的式子表示)
20.(2013?荊州)如圖,△ABC是斜邊AB的長為3的等腰直角三角形,在△ABC內(nèi)作第1個內(nèi)接正方形A1B1D1E1(D1、E1在AB上,A1、B1分別在AC、BC上),再在△A1B1C內(nèi)接同樣的方法作第2個內(nèi)接正方形A2B2D2E2,…如此下去,操作n次,則第n個小正方形AnBnDnEn 的邊長是 _________ .
三.解答題(共8小題)
21.(2013?珠海)如圖,在Rt△ABC中,∠C=90°,點P為AC邊上的一點,將線段AP繞點A順時針方向旋轉(zhuǎn)(點P對應(yīng)點P′),當(dāng)AP旋轉(zhuǎn)至AP′⊥AB時,點B、P、P′恰好在同一直線上,此時作P′E⊥AC于點E.
(1)求證:∠CBP=∠ABP;
(2)求證:AE=CP;
(3)當(dāng),BP′=5時,求線段AB的長.
22.(2013?湛江)如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
(1)求證:PA為⊙O的切線;
(2)若OB=5,OP=,求AC的長.
23.(2013?宜賓)如圖,AB是⊙O的直徑,∠B=∠CAD.
(1)求證:AC是⊙O的切線;
(2)若點E是的中點,連接AE交BC于點F,當(dāng)BD=5,CD=4時,求AF的值.
24.(2013?襄陽)如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑.∠ACB的平分線交⊙O于點D,過點D作⊙O的切線PD交CA的延長線于點P,過點A作AE⊥CD于點E,過點B作BF⊥CD于點F.
(1)求證:DP∥AB;
(2)若AC=6,BC=8,求線段PD的長.
25.(2013?紹興)在△ABC中,∠CAB=90°,AD⊥BC于點D,點E為AB的中點,EC與AD交于點G,點F在BC上.
(1)如圖1,AC:AB=1:2,EF⊥CB,求證:EF=CD.
(2)如圖2,AC:AB=1:,EF⊥CE,求EF:EG的值.
26.(2013?汕頭)如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延長線于點E.
(1)求證:∠BCA=∠BAD;
(2)求DE的長;
(3)求證:BE是⊙O的切線.
27.(2013?朝陽)如圖,直線AB與⊙O相切于點A,直徑DC的延長線交AB于點B,AB=8,OB=10
(1)求⊙O的半徑.
(2)點E在⊙O上,連接AE,AC,EC,并且AE=AC,判斷直線EC與AB有怎樣的位置關(guān)系?并證明你的結(jié)論.
(3)求弦EC的長.
28.(2013?成都)如圖,點B在線段AC上,點D,E在AC同側(cè),∠A=∠C=90°,BD⊥BE,AD=BC.
(1)求證:AC=AD+CE;
(2)若AD=3,CE=5,點P為線段AB上的動點,連接DP,作PQ⊥DP,交直線BE于點Q;
(i)當(dāng)點P與A,B兩點不重合時,求的值;
(ii)當(dāng)點P從A點運動到AC的中點時,求線段DQ的中點所經(jīng)過的路徑(線段)長.(直接寫出結(jié)果,不必寫出解答過程)
參考答案與解析
一.選擇題(共10小題)
1.(2013?自貢)如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于E,交DC的延長線于F,BG⊥AE于G,BG=,則△EFC的周長為( ?。?
2.(2013?重慶)如圖,在平行四邊形ABCD中,點E在AD上,連接CE并延長與BA的延長線交于點F,若AE=2ED,CD=3cm,則AF的長為( ?。?
3.(2013?孝感)如圖,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC內(nèi)依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.則EF等于( ?。?
4.(2013?咸寧)如圖,正方形ABCD是一塊綠化帶,其中陰影部分EOFB,GHMN都是正方形的花圃.已知自由飛翔的小鳥,將隨機落在這塊綠化帶上,則小鳥在花圃上的概率為( ?。?
5.(2013?綏化)如圖,點A,B,C,D為⊙O上的四個點,AC平分∠BAD,AC交BD于點E,CE=4,CD=6,則AE的長為( ?。?
6.(2013?內(nèi)江)如圖,在?ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,S△DEF:S△ABF=4:25,則DE:EC=( ?。?
7.(2013?黑龍江)如圖,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于點E,在BC上截取BF=AE,連接AF交CE于點G,連接DG交AC于點H,過點A作AN⊥BC,垂足為N,AN交CE于點M.則下列結(jié)論;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正確的個數(shù)是( ?。?
8.(2013?恩施州)如圖所示,在平行四邊形ABCD中,AC與BD相交于點O,E為OD的中點,連接AE并延長交DC于點F,則DF:FC=( ?。?
9.(2013?德陽)如圖,在⊙O上有定點C和動點P,位于直徑AB的異側(cè),過點C作CP的垂線,與PB的延長線交于點Q,已知:⊙O半徑為,tan∠ABC=,則CQ的最大值是( ?。?
10.(2012?岳陽)如圖,AB為半圓O的直徑,AD、BC分別切⊙O于A、B兩點,CD切⊙O于點E,AD與CD相交于D,BC與CD相交于C,連接OD、OC,對于下列結(jié)論:①OD2=DE?CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD?OA;⑤∠DOC=90°,其中正確的是( )
二.填空題(共10小題)
11.(2013?昭通)如圖,AB是⊙O的直徑,弦BC=4cm,F(xiàn)是弦BC的中點,∠ABC=60°.若動點E以1cm/s的速度從A點出發(fā)在AB上沿著A→B→A運動,設(shè)運動時間為t(s)(0≤t<16),連接EF,當(dāng)△BEF是直角三角形時,t(s)的值為 4s .(填出一個正確的即可)
12.(2013?南通)如圖,在?ABCD中,AB=6cm,AD=9cm,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,BG=4cm,則EF+CF的長為 5 cm.
13.(2013?菏澤)如圖所示,在△ABC中,BC=6,E、F分別是AB、AC的中點,動點P在射線EF上,BP交CE于D,∠CBP的平分線交CE于Q,當(dāng)CQ=CE時,EP+BP= 12 .
14.(2013?巴中)如圖,小明在打網(wǎng)球時,使球恰好能打過網(wǎng),而且落在離網(wǎng)4米的位置上,則球拍擊球的高度h為 1.5米?。?
15.(2012?自貢)正方形ABCD的邊長為1cm,M、N分別是BC、CD上兩個動點,且始終保持AM⊥MN,當(dāng)BM= cm時,四邊形ABCN的面積最大,最大面積為 cm2.
16.(2012?宜賓)如圖,在⊙O中,AB是直徑,點D是⊙O上一點,點C是的中點,弦CE⊥AB于點F,過點D的切線交EC的延長線于點G,連接AD,分別交CF、BC于點P、Q,連接AC.給出下列結(jié)論:
①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心;④AP?AD=CQ?CB.
其中正確的是?、冖邰堋。▽懗鏊姓_結(jié)論的序號).
17.(2012?泉州)在△ABC中,P是AB上的動點(P異于A、B),過點P的直線截△ABC,使截得的三角形與△ABC相似,我們不妨稱這種直線為過點P的△ABC的相似線,簡記為P(lx)(x為自然數(shù)).
(1)如圖①,∠A=90°,∠B=∠C,當(dāng)BP=2PA時,P(l1)、P(l2)都是過點P的△ABC的相似線(其中l(wèi)1⊥BC,l2∥AC),此外,還有 1 條;
(2)如圖②,∠C=90°,∠B=30°,當(dāng)= 或或 時,P(lx)截得的三角形面積為△ABC面積的.
18.(2012?嘉興)如圖,在Rt△ABC中,∠ABC=90°,BA=BC.點D是AB的中點,連接CD,過點B作BG丄CD,分別交CD、CA于點E、F,與過點A且垂直于AB的直線相交于點G,連接DF.給出以下四個結(jié)論:
①;
②點F是GE的中點;
③AF=AB;
④S△ABC=5S△BDF,其中正確的結(jié)論序號是 ①③?。?
19.(2012?瀘州)如圖,n個邊長為1的相鄰正方形的一邊均在同一直線上,點M1,M2,M3,…Mn分別為邊B1B2,B2B3,B3B4,…,BnBn+1的中點,△B1C1M1的面積為S1,△B2C2M2的面積為S2,…△BnCnMn的面積為Sn,則Sn= ?。ㄓ煤琻的式子表示)
20.(2013?荊州)如圖,△ABC是斜邊AB的長為3的等腰直角三角形,在△ABC內(nèi)作第1個內(nèi)接正方形A1B1D1E1(D1、E1在AB上,A1、B1分別在AC、BC上),再在△A1B1C內(nèi)接同樣的方法作第2個內(nèi)接正方形A2B2D2E2,…如此下去,操作n次,則第n個小正方形AnBnDnEn 的邊長是 ?。?
三.解答題(共8小題)
21.(2013?珠海)如圖,在Rt△ABC中,∠C=90°,點P為AC邊上的一點,將線段AP繞點A順時針方向旋轉(zhuǎn)(點P對應(yīng)點P′),當(dāng)AP旋轉(zhuǎn)至AP′⊥AB時,點B、P、P′恰好在同一直線上,此時作P′E⊥AC于點E.
(1)求證:∠CBP=∠ABP;
(2)求證:AE=CP;
(3)當(dāng),BP′=5時,求線段AB的長.
22.(2013?湛江)如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
(1)求證:PA為⊙O的切線;
(2)若OB=5,OP=,求AC的長.
23.(2013?宜賓)如圖,AB是⊙O的直徑,∠B=∠CAD.
(1)求證:AC是⊙O的切線;
(2)若點E是的中點,連接AE交BC于點F,當(dāng)BD=5,CD=4時,求AF的值.
24.(2013?襄陽)如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑.∠ACB的平分線交⊙O于點D,過點D作⊙O的切線PD交CA的延長線于點P,過點A作AE⊥CD于點E,過點B作BF⊥CD于點F.
(1)求證:DP∥AB;
(2)若AC=6,BC=8,求線段PD的長.
25.(2013?紹興)在△ABC中,∠CAB=90°,AD⊥BC于點D,點E為AB的中點,EC與AD交于點G,點F在BC上.
(1)如圖1,AC:AB=1:2,EF⊥CB,求證:EF=CD.
(2)如圖2,AC:AB=1:,EF⊥CE,求EF:EG的值.
26.(2013?汕頭)如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延長線于點E.
(1)求證:∠BCA=∠BAD;
(2)求DE的長;
(3)求證:BE是⊙O的切線.
27.(2013?朝陽)如圖,直線AB與⊙O相切于點A,直徑DC的延長線交AB于點B,AB=8,OB=10
(1)求⊙O的半徑.
(2)點E在⊙O上,連接AE,AC,EC,并且AE=AC,判斷直線EC與AB有怎樣的位置關(guān)系?并證明你的結(jié)論.
(3)求弦EC的長.
28.(2013?成都)如圖,點B在線段AC上,點D,E在AC同側(cè),∠A=∠C=90°,BD⊥BE,AD=BC.
(1)求證:AC=AD+CE;
(2)若AD=3,CE=5,點P為線段AB上的動點,連接DP,作PQ⊥DP,交直線BE于點Q;
(i)當(dāng)點P與A,B兩點不重合時,求的值;
(ii)當(dāng)點P從A點運動到AC的中點時,求線段DQ的中點所經(jīng)過的路徑(線段)長.(直接寫出結(jié)果,不必寫出解答過程)
A.11B.10C.9D.8 A.5cmB.6cmC.7cmD.8cm A.B.C.D. A.B.C.D. A.4B.5C.6D.7 A.2:5B.2:3C.3:5D.3:2 A.1B.2C.3D.4 A.1:4B.1:3C.2:3D.1:2 A.5B.C.D. A.①②⑤B.②③④C.③④⑤D.①④⑤ A.11B.10C.9D.8考點:相似三角形的判定與性質(zhì);勾股定理;平行四邊形的性質(zhì).4387773分析:判斷出△ADF是等腰三角形,△ABE是等腰三角形,DF的長度,繼而得到EC的長度,在Rt△BGE中求出GE,繼而得到AE,求出△ABE的周長,根據(jù)相似三角形的周長之比等于相似比,可得出△EFC的周長.解答:解:∵在?ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分線交BC于點E,
∴∠BAF=∠DAF,
∵AB∥DF,AD∥BC,
∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,
∴AB=BE=6,AD=DF=9,
∴△ADF是等腰三角形,△ABE是等腰三角形,
∵AD∥BC,
∴△EFC是等腰三角形,且FC=CE,
∴EC=FC=9﹣6=3,
在△ABG中,BG⊥AE,AB=6,BG=4,
∴AG==2,
∴AE=2AG=4,
∴△ABE的周長等于16,
又∵△CEF∽△BEA,相似比為1:2,
∴△CEF的周長為8.
故選D.
點評:本題主要考查了勾股定理、相似三角形、等腰三角形的性質(zhì),注意掌握相似三角形的周長之比等于相似比,此題難度較大. A.5cmB.6cmC.7cmD.8cm考點:相似三角形的判定與性質(zhì);平行四邊形的性質(zhì).4387773分析:由邊形ABCD是平行四邊形,可得AB∥CD,即可證得△AFE∽△DEC,然后由相似三角形的對應(yīng)邊成比例,求得答案.解答:解:∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴△AFE∽△DEC,
∴AE:DE=AF:CD,
∵AE=2ED,CD=3cm,
∴AF=2CD=6cm.
故選B.點評:此題考查了相似三角形的判定與性質(zhì)以及平行四邊形的性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用. A.B.C.D.考點:相似三角形的判定與性質(zhì);等腰三角形的判定與性質(zhì).4387773專題:壓軸題.分析:依次判定△ABC∽△BDC∽△CDE∽△DFE,根據(jù)相似三角形的對應(yīng)邊成比例的知識,可得出EF的長度.解答:解:∵AB=AC,
∴∠ABC=∠ACB,
又∵∠CBD=∠A,
∴△ABC∽△BDC,
同理可得:△ABC∽△BDC∽△CDE∽△DFE,
∴=,=,=,=,
∵AB=AC,
∴CD=CE,
解得:CD=CE=,DE=,EF=.
故選C.點評:本題考查了相似三角形的判定與性質(zhì),本題中相似三角形比較容易找到,難點在于根據(jù)對應(yīng)邊成比例求解線段的長度,注意仔細對應(yīng),不要出錯. A.B.C.D.考點:相似三角形的應(yīng)用;正方形的性質(zhì);幾何概率.4387773專題:壓軸題.分析:求得陰影部分的面積與正方形ABCD的面積的比即可求得小鳥在花圃上的概率;解答:解:設(shè)正方形的ABCD的邊長為a,
則BF=BC=,AN=NM=MC=a,
∴陰影部分的面積為()2+(a)2=a2,
∴小鳥在花圃上的概率為=
故選C.點評:本題考查了正方形的性質(zhì)及幾何概率,關(guān)鍵是表示出大正方形的邊長,從而表示出兩個陰影正方形的邊長,最后表示出面積. A.4B.5C.6D.7考點:圓周角定理;圓心角、弧、弦的關(guān)系;相似三角形的判定與性質(zhì).4387773分析:根據(jù)圓周角定理∠CAD=∠CDB,繼而證明△ACD∽△DCE,設(shè)AE=x,則AC=x+4,利用對應(yīng)邊成比例,可求出x的值.解答:解:設(shè)AE=x,則AC=x+4,
∵AC平分∠BAD,
∴∠BAC=∠CAD,
∵∠CDB=∠BAC(圓周角定理),
∴∠CAD=∠CDB,
∴△ACD∽△DCE,
∴=,即=,
解得:x=5.
故選B.點評:本題考查了圓周角定理、相似三角形的判定與性質(zhì),解答本題的關(guān)鍵是得出∠CAD=∠CDB,證明△ACD∽△DCE. A.2:5B.2:3C.3:5D.3:2考點:相似三角形的判定與性質(zhì);平行四邊形的性質(zhì).4387773分析:先根據(jù)平行四邊形的性質(zhì)及相似三角形的判定定理得出△DEF∽△BAF,再根據(jù)S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性質(zhì)即可求出 DE:AB的值,由AB=CD即可得出結(jié)論.解答:解:∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠EAB=∠DEF,∠AFB=∠DFE,
∴△DEF∽△BAF,
∵S△DEF:S△ABF=4:25,
∴DE:AB=2:5,
∵AB=CD,
∴DE:EC=2:3.
故選B.點評:本題考查的是相似三角形的判定與性質(zhì)及平行四邊形的性質(zhì),熟知相似三角形邊長的比等于相似比,面積的比等于相似比的平方是解答此題的關(guān)鍵. A.1B.2C.3D.4考點:相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì);直角梯形.4387773專題:壓軸題.分析:如解答圖所示:
結(jié)論①正確:證明△ACM≌△ABF即可;
結(jié)論②正確:由△ACM≌△ABF得∠2=∠4,進而得∠4+∠6=90°,即CE⊥AF;
結(jié)論③正確:證法一:利用四點共圓;證法二:利用三角形全等;
結(jié)論④正確:證法一:利用四點共圓;證法二:利用三角形全等.解答:解:(1)結(jié)論①正確.理由如下:
∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,
∴∠6=∠CMN,又∵∠5=∠CMN,
∴∠5=∠6,
∴AM=AE=BF.
易知ADCN為正方形,△ABC為等腰直角三角形,∴AB=AC.
在△ACM與△ABF中,
,
∴△ACM≌△ABF(SAS),
∴CM=AF;
(2)結(jié)論②正確.理由如下:
∵△ACM≌△ABF,∴∠2=∠4,
∵∠2+∠6=90°,∴∠4+∠6=90°,
∴CE⊥AF;
(3)結(jié)論③正確.理由如下:
證法一:∵CE⊥AF,∴∠ADC+∠AGC=180°,∴A、D、C、G四點共圓,
∴∠7=∠2,∵∠2=∠4,
∴∠7=∠4,又∵∠DAH=∠B=45°,
∴△ABF∽△DAH;
證法二:∵CE⊥AF,∠1=∠2,
∴△ACF為等腰三角形,AC=CF,點G為AF中點.
在Rt△ANF中,點G為斜邊AF中點,
∴NG=AG,∴∠MNG=∠3,∴∠DAG=∠CNG.
在△ADG與△NCG中,
,
∴△ADG≌△NCG(SAS),
∴∠7=∠1,又∵∠1=∠2=∠4,
∴∠7=∠4,又∵∠DAH=∠B=45°,
∴△ABF∽△DAH;
(4)結(jié)論④正確.理由如下:
證法一:∵A、D、C、G四點共圓,
∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,
∴∠DGC=∠DGA,即GD平分∠AGC.
證法二:∵AM=AE,CE⊥AF,∴∠3=∠4,又∠2=∠4,∴∠3=∠2
則∠CGN=180°﹣∠1﹣90°﹣∠MNG=180°﹣∠1﹣90°﹣∠3=90°﹣∠1﹣∠2=45°.
∵△ADG≌△NCG,
∴∠DGA=∠CGN=45°=∠AGC,
∴GD平分∠AGC.
綜上所述,正確的結(jié)論是:①②③④,共4個.
故選D.
點評:本題是幾何綜合題,考查了相似三角形的判定、全等三角形的判定與性質(zhì)、正方形、等腰直角三角形、直角梯形、等腰三角形等知識點,有一定的難度.解答中四點共圓的證法,僅供同學(xué)們參考. A.1:4B.1:3C.2:3D.1:2考點:相似三角形的判定與性質(zhì);平行四邊形的性質(zhì).4387773分析:首先證明△DFE∽△BAE,然后利用對應(yīng)變成比例,E為OD的中點,求出DF:AB的值,又知AB=DC,即可得出DF:FC的值.解答:解:在平行四邊形ABCD中,AB∥DC,
則△DFE∽△BAE,
∴=,
∵O為對角線的交點,
∴DO=BO,
又∵E為OD的中點,
∴DE=DB,
則DE:EB=1:3,
∴DF:AB=1:3,
∵DC=AB,
∴DF:DC=1:3,
∴DF:FC=1:2.
故選D.
點評:本題考查了相似三角形的判定與性質(zhì)以及平行四邊形的性質(zhì),難度適中,解答本題的關(guān)鍵是根據(jù)平行證明△DFE∽△BAE,然后根據(jù)對應(yīng)邊成比例求值. A.5B.C.D.考點:圓周角定理;圓內(nèi)接四邊形的性質(zhì);相似三角形的判定與性質(zhì).4387773專題:計算題;壓軸題.分析:根據(jù)圓周角定理的推論由AB為⊙O的直徑得到∠ACB=90°,再根據(jù)正切的定義得到tan∠ABC==,然后根據(jù)圓周角定理得到∠A=∠P,則可證得△ACB∽△PCQ,利用相似比得CQ=?PC=PC,PC為直徑時,PC最長,此時CQ最長,然后把PC=5代入計算即可.解答:解:∵AB為⊙O的直徑,
∴AB=5,∠ACB=90°,
∵tan∠ABC=,
∴=,
∵CP⊥CQ,
∴∠PCQ=90°,
而∠A=∠P,
∴△ACB∽△PCQ,
∴=,
∴CQ=?PC=PC,
當(dāng)PC最大時,CQ最大,即PC為⊙O的直徑時,CQ最大,此時CQ=×5=.
故選D.點評:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了三角形相似的判定與性質(zhì). A.①②⑤B.②③④C.③④⑤D.①④⑤考點:切線的性質(zhì);切線長定理;相似三角形的判定與性質(zhì).4387773專題:計算題;壓軸題.分析:連接OE,由AD,DC,BC都為圓的切線,根據(jù)切線的性質(zhì)得到三個角為直角,且利用切線長定理得到DE=DA,CE=CB,由CD=DE+EC,等量代換可得出CD=AD+BC,選項②正確;由AD=ED,OD為公共邊,利用HL可得出直角三角形ADO與直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而這四個角之和為平角,可得出∠DOC為直角,選項⑤正確;由∠DOC與∠DEO都為直角,再由一對公共角相等,利用兩對對應(yīng)角相等的兩三角形相似,可得出三角形DEO與三角形DOC相似,由相似得比例可得出OD2=DE?CD,選項①正確;又ABCD為直角梯形,利用梯形的面積計算后得到梯形ABCD的面積為AB(AD+BC),將AD+BC化為CD,可得出梯形面積為AB?CD,選項④錯誤,而OD不一定等于OC,選項③錯誤,即可得到正確的選項.解答:解:連接OE,如圖所示:
∵AD與圓O相切,DC與圓O相切,BC與圓O相切,
∴∠DAO=∠DEO=∠OBC=90°,
∴DA=DE,CE=CB,AD∥BC,
∴CD=DE+EC=AD+BC,選項②正確;
在Rt△ADO和Rt△EDO中,
,
∴Rt△ADO≌Rt△EDO(HL),
∴∠AOD=∠EOD,
同理Rt△CEO≌Rt△CBO,
∴∠EOC=∠BOC,
又∠AOD+∠DOE+∠EOC+∠COB=180°,
∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,選項⑤正確;
∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,
∴△EDO∽△ODC,
∴=,即OD2=DC?DE,選項①正確;
而S梯形ABCD=AB?(AD+BC)=AB?CD,選項④錯誤;
由OD不一定等于OC,選項③錯誤,
則正確的選項有①②⑤.
故選A點評:此題考查了切線的性質(zhì),切線長定理,相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),以及梯形面積的求法,利用了轉(zhuǎn)化的數(shù)學(xué)思想,熟練掌握定理及性質(zhì)是解本題的關(guān)鍵.考點:圓周角定理;垂徑定理;相似三角形的判定與性質(zhì).4387773專題:壓軸題;開放型.分析:根據(jù)圓周角定理得到∠C=90°,由于∠ABC=60°,BC=4cm,根據(jù)含30度的直角三角形三邊的關(guān)系得到AB=2BC=8cm,而F是弦BC的中點,所以當(dāng)EF∥AC時,△BEF是直角三角形,此時E為AB的中點,易得t=4s;當(dāng)從A點出發(fā)運動到B點名,再運動到O點時,此時t=12s;也可以過F點作AB的垂線,點E點運動到垂足時,△BEF是直角三角形.解答:解:∵AB是⊙O的直徑,
∴∠C=90°,
而∠ABC=60°,BC=4cm,
∴AB=2BC=8cm,
∵F是弦BC的中點,
∴當(dāng)EF∥AC時,△BEF是直角三角形,
此時E為AB的中點,即AE=AO=4cm,
∴t==4(s).
故答案為4s.點評:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了圓周角定理的推論以及含30度的直角三角形三邊的關(guān)系.考點:相似三角形的判定與性質(zhì);等腰三角形的判定與性質(zhì);勾股定理;平行四邊形的性質(zhì).4387773專題:壓軸題.分析:首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得內(nèi)錯角∠DAE=∠BEA,等量代換后可證得AB=BE,即△ABE是等腰三角形,根據(jù)等腰三角形“三線合一”的性質(zhì)得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的長;然后,利用平行線分線段成比例的性質(zhì)分別得出EF,F(xiàn)C的長,即可得出答案.解答:解:∵AE平分∠BAD,
∴∠DAE=∠BAE;
又∵AD∥BC,
∴∠BEA=∠DAE=∠BAE,
∴AB=BE=6cm,
∴EC=9﹣6=3(cm),
∵BG⊥AE,垂足為G,
∴AE=2AG.
在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4cm,
∴AG==2(cm),
∴AE=2AG=4cm;
∵EC∥AD,
∴====,
∴=,=,
解得:EF=2(cm),F(xiàn)C=3(cm),
∴EF+CF的長為5cm.
故答案為:5.
點評:本題考查了平行四邊形的性質(zhì),相似三角形的判定與性質(zhì),勾股定理等知識的掌握程度和靈活運用能力,同時也體現(xiàn)了對數(shù)學(xué)中的數(shù)形結(jié)合思想的考查,難度適中.考點:相似三角形的判定與性質(zhì);等腰三角形的判定與性質(zhì);三角形中位線定理.4387773專題:壓軸題.分析:延長BQ交射線EF于M,根據(jù)三角形的中位線平行于第三邊可得EF∥BC,根據(jù)兩直線平行,內(nèi)錯角相等可得∠M=∠CBM,再根據(jù)角平分線的定義可得∠PBM=∠CBM,從而得到∠M=∠PBM,根據(jù)等角對等邊可得BP=PM,求出EP+BP=EM,再根據(jù)CQ=CE求出EQ=2CQ,然后根據(jù)△MEQ和△BCQ相似,利用相似三角形對應(yīng)邊成比例列式求解即可.解答:解:如圖,延長BQ交射線EF于M,
∵E、F分別是AB、AC的中點,
∴EF∥BC,
∴∠M=∠CBM,
∵BQ是∠CBP的平分線,
∴∠PBM=∠CBM,
∴∠M=∠PBM,
∴BP=PM,
∴EP+BP=EP+PM=EM,
∵CQ=CE,
∴EQ=2CQ,
由EF∥BC得,△MEQ∽△BCQ,
∴==2,
∴EM=2BC=2×6=12,
即EP+BP=12.
故答案為:12.
點評:本題考查了相似三角形的判定與性質(zhì),角平分線的定義,平行線的性質(zhì),延長BQ構(gòu)造出相似三角形,求出EP+BP=EM并得到相似三角形是解題的關(guān)鍵,也是本題的難點.考點:相似三角形的應(yīng)用.4387773分析:根據(jù)球網(wǎng)和擊球時球拍的垂直線段平行即DE∥BC可知,△ADE∽△ACB,根據(jù)其相似比即可求解.解答:解:∵DE∥BC,
∴△ADE∽△ACB,即=,
則=,
∴h=1.5m.
故答案為:1.5米.
點評:本題考查了相似三角形在測量高度時的應(yīng)用,解題時關(guān)鍵是找出相似的三角形,然后根據(jù)對應(yīng)邊成比例列出方程,建立適當(dāng)?shù)臄?shù)學(xué)模型來解決問題.考點:相似三角形的判定與性質(zhì);二次函數(shù)的最值;正方形的性質(zhì).4387773專題:壓軸題.分析:設(shè)BM=xcm,則MC=1﹣xcm,當(dāng)AM⊥MN時,利用互余關(guān)系可證△ABM∽△MCN,利用相似比求CN,根據(jù)梯形的面積公式表示四邊形ABCN的面積,用二次函數(shù)的性質(zhì)求面積的最大值.解答:解:設(shè)BM=xcm,則MC=1﹣xcm,
∵∠AMN=90°,
∴∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,
∴∠AMB=∠MNC,
又∵∠B=∠C
∴△ABM∽△MCN,則,即,
解得CN==x(1﹣x),
∴S四邊形ABCN=×1×[1+x(1﹣x)]=﹣x2+x+,
∵﹣<0,
∴當(dāng)x=﹣=cm時,S四邊形ABCN最大,最大值是﹣×()2+×+=cm2.
故答案是:,.點評:本題考查了二次函數(shù)的性質(zhì)的運用.關(guān)鍵是根據(jù)已知條件判斷相似三角形,利用相似比求函數(shù)關(guān)系式.考點:切線的性質(zhì);圓周角定理;三角形的外接圓與外心;相似三角形的判定與性質(zhì).4387773專題:計算題;壓軸題.分析:連接BD,由GD為圓O的切線,根據(jù)弦切角等于夾弧所對的圓周角得到∠GDP=∠ABD,再由AB為圓的直徑,根據(jù)直徑所對的圓周角為直角得到∠ACB為直角,由CE垂直于AB,得到∠AFP為直角,再由一對公共角,得到三角形APF與三角形ABD相似,根據(jù)相似三角形的對應(yīng)角相等可得出∠APF等于∠ABD,根據(jù)等量代換及對頂角相等可得出∠GPD=∠GDP,利用等角對等邊可得出GP=GD,選項②正確;由直徑AB垂直于弦CE,利用垂徑定理得到A為的中點,得到兩條弧相等,再由C為的中點,得到兩條弧相等,等量代換得到三條弧相等,根據(jù)等弧所對的圓周角相等可得出∠CAP=∠ACP,利用等角對等邊可得出AP=CP,又AB為直徑得到∠ACQ為直角,利用等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P為直角三角形ACQ斜邊上的中點,即為直角三角形ACQ的外心,選項③正確;利用等弧所對的圓周角相等得到一對角相等,再由一對公共角相等,得到三角形ACQ與三角形ABC相似,根據(jù)相似得比例得到AC2=CQ?CB,連接CD,同理可得出三角形ACP與三角形ACD相似,根據(jù)相似三角形對應(yīng)邊成比例可得出AC2=AP?AD,等量代換可得出AP?AD=CQ?CB,選項④正確.解答:解:∠BAD與∠ABC不一定相等,選項①錯誤;
連接BD,如圖所示:
∵GD為圓O的切線,
∴∠GDP=∠ABD,
又AB為圓O的直徑,∴∠ADB=90°,
∵CE⊥AB,∴∠AFP=90°,
∴∠ADB=∠AFP,又∠PAF=∠BAD,
∴△APF∽△ABD,
∴∠ABD=∠APF,又∠APF=∠GPD,
∴∠GDP=∠GPD,
∴GP=GD,選項②正確;
∵直徑AB⊥CE,
∴A為的中點,即=,
又C為的中點,∴=,
∴=,
∴∠CAP=∠ACP,
∴AP=CP,
又AB為圓O的直徑,∴∠ACQ=90°,
∴∠PCQ=∠PQC,
∴PC=PQ,
∴AP=PQ,即P為Rt△ACQ斜邊AQ的中點,
∴P為Rt△ACQ的外心,選項③正確;
連接CD,如圖所示:
∵=,
∴∠B=∠CAD,又∠ACQ=∠BCA,
∴△ACQ∽△BCA,
∴=,即AC2=CQ?CB,
∵=,
∴∠ACP=∠ADC,又∠CAP=∠DAC,
∴△ACP∽△ADC,
∴=,即AC2=AP?AD,
∴AP?AD=CQ?CB,選項④正確,
則正確的選項序號有②③④.
故答案為:②③④點評:此題考查了切線的性質(zhì),圓周角定理,相似三角形的判定與性質(zhì),以及三角形的外接圓與圓心,熟練掌握性質(zhì)及定理是解本題的關(guān)鍵.考點:相似三角形的判定與性質(zhì).4387773專題:壓軸題.分析:(1)過點P作l3∥BC交AC于Q,則△APQ∽△ABC,l3是第3條相似線;
(2)按照相似線的定義,找出所有符合條件的相似線.總共有4條,注意不要遺漏.解答:解:(1)存在另外 1 條相似線.
如圖1所示,過點P作l3∥BC交AC于Q,則△APQ∽△ABC;
故答案為:1;
(2)設(shè)P(lx)截得的三角形面積為S,S=S△ABC,則相似比為1:2.
如圖2所示,共有4條相似線:
①第1條l1,此時P為斜邊AB中點,l1∥AC,∴=;
②第2條l2,此時P為斜邊AB中點,l2∥BC,∴=;
③第3條l3,此時BP與BC為對應(yīng)邊,且=,∴==;
④第4條l4,此時AP與AC為對應(yīng)邊,且=,∴==,∴=.
故答案為:或或.
點評:本題引入“相似線”的新定義,考查相似三角形的判定與性質(zhì)和解直角三角形的運算;難點在于找出所有的相似線,不要遺漏.考點:相似三角形的判定與性質(zhì);勾股定理;等腰直角三角形.4387773專題:壓軸題.分析:首先根據(jù)題意易證得△AFG∽△CFB,根據(jù)相似三角形的對應(yīng)邊成比例與BA=BC,繼而證得正確;由點D是AB的中點,易證得BC=2BD,由等角的余角相等,可得∠DBE=∠BCD,即可得AG=AB,繼而可得FG=BF;即可得AF=AC,又由等腰直角三角形的性質(zhì),可得AC=AB,即可求得AF=AB;則可得S△ABC=6S△BDF.解答:解:∵在Rt△ABC中,∠ABC=90°,
∴AB⊥BC,AG⊥AB,
∴AG∥BC,
∴△AFG∽△CFB,
∴,
∵BA=BC,
∴,
故①正確;
∵∠ABC=90°,BG⊥CD,
∴∠DBE+∠BDE=∠BDE+∠BCD=90°,
∴∠DBE=∠BCD,
∵AB=CB,點D是AB的中點,
∴BD=AB=CB,
∵tan∠BCD==,
∴在Rt△ABG中,tan∠DBE==,
∵=,
∴FG=FB,
∵GE≠BF,
∴點F不是GE的中點.
故②錯誤;
∵△AFG∽△CFB,
∴AF:CF=AG:BC=1:2,
∴AF=AC,
∵AC=AB,
∴AF=AB,
故③正確;
∵BD=AB,AF=AC,
∴S△ABC=6S△BDF,
故④錯誤.
故答案為:①③.
點評:此題考查了相似三角形的判定與性質(zhì)、直角三角形的性質(zhì)以及三角函數(shù)等知識.此題難度適中,解題的關(guān)鍵是證得△AFG∽△CFB,注意掌握數(shù)形結(jié)合思想與轉(zhuǎn)化思想的應(yīng)用.考點:相似三角形的判定與性質(zhì).4387773專題:壓軸題;規(guī)律型.分析:由n個邊長為1的相鄰正方形的一邊均在同一直線上,點M1,M2,M3,…Mn分別為邊B1B2,B2B3,B3B4,…,BnBn+1的中點,即可求得△B1C1Mn的面積,又由BnCn∥B1C1,即可得△BnCnMn∽△B1C1Mn,然后利用相似三角形的面積比等于相似比的平方,求得答案.解答:解:∵n個邊長為1的相鄰正方形的一邊均在同一直線上,點M1,M2,M3,…Mn分別為邊B1B2,B2B3,B3B4,…,BnBn+1的中點,
∴S1=×B1C1×B1M1=×1×=,
S△B1C1M2=×B1C1×B1M2=×1×=,
S△B1C1M3=×B1C1×B1M3=×1×=,
S△B1C1M4=×B1C1×B1M4=×1×=,
S△B1C1Mn=×B1C1×B1Mn=×1×=,
∵BnCn∥B1C1,
∴△BnCnMn∽△B1C1Mn,
∴S△BnCnMn:S△B1C1Mn=()2=()2,
即Sn:=,
∴Sn=.
故答案為:.點評:此題考查了相似三角形的判定與性質(zhì)、正方形的性質(zhì)以及直角三角形面積的公式.此題難度較大,注意掌握相似三角形面積的比等于相似比的平方定理的應(yīng)用是解此題的關(guān)鍵.考點:相似三角形的判定與性質(zhì);等腰直角三角形.4387773 專題:規(guī)律型.分析:求出第一個、第二個、第三個內(nèi)接正方形的邊長,總結(jié)規(guī)律可得出第n個小正方形AnBnDnEn 的邊長.解答:解:∵∠A=∠B=45°,
∴AE1=A1E=A1B1=B1D1=D1B,
∴第一個內(nèi)接正方形的邊長=AB=1;
同理可得:
第二個內(nèi)接正方形的邊長=A1B1=AB=;
第三個內(nèi)接正方形的邊長=A2B2=AB=;
故可推出第n個小正方形AnBnDnEn 的邊長=AB=.
故答案為:.點評:本題考查了相似三角形的判定與性質(zhì)、等腰直角三角形的性質(zhì),解答本題的關(guān)鍵是求出前幾個內(nèi)接正方形的邊長,得出一般規(guī)律.考點:全等三角形的判定與性質(zhì);角平分線的性質(zhì);勾股定理;相似三角形的判定與性質(zhì).4387773專題:幾何綜合題;壓軸題.分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AP=AP′,根據(jù)等邊對等角的性質(zhì)可得∠APP′=∠AP′P,再根據(jù)等角的余角相等證明即可;
(2)過點P作PD⊥AB于D,根據(jù)角平分線上的點到角的兩邊的距離相等可得CP=DP,然后求出∠PAD=∠AP′E,利用“角角邊”證明△APD和△P′AE全等,根據(jù)全等三角形對應(yīng)邊相等可得AE=DP,從而得證;
(3)設(shè)CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EPP′相似,根據(jù)相似三角形對應(yīng)邊成比例列式求出P′A=AB,然后在Rt△ABP′中,利用勾股定理列式求解即可.解答:(1)證明:∵AP′是AP旋轉(zhuǎn)得到,
∴AP=AP′,
∴∠APP′=∠AP′P,
∵∠C=90°,AP′⊥AB,
∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,
又∵∠BPC=∠APP′(對頂角相等),
∴∠CBP=∠ABP;
(2)證明:如圖,過點P作PD⊥AB于D,
∵∠CBP=∠ABP,∠C=90°,
∴CP=DP,
∵P′E⊥AC,
∴∠EAP′+∠AP′E=90°,
又∵∠PAD+∠EAP′=90°,
∴∠PAD=∠AP′E,
在△APD和△P′AE中,,
∴△APD≌△P′AE(AAS),
∴AE=DP,
∴AE=CP;
(3)解:∵=,
∴設(shè)CP=3k,PE=2k,
則AE=CP=3k,AP′=AP=3k+2k=5k,
在Rt△AEP′中,P′E==4k,
∵∠C=90°,P′E⊥AC,
∴∠CBP+∠BPC=90°,∠EP′P+∠EPP′=90°,
∵∠BPC=∠EPP′(對頂角相等),
∴∠CBP=∠EP′P,
又∵∠BAP′=∠P′EP=90°,
∴△ABP′∽△EPP′,
∴=,
即=,
解得P′A=AB,
在Rt△ABP′中,AB2+P′A2=BP′2,
即AB2+AB2=(5)2,
解得AB=10.
點評:本題考查了全等三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),角平分線上的點到角的兩邊的距離相等的性質(zhì),勾股定理,相似三角形的判定與性質(zhì),(2)作輔助線構(gòu)造出過渡線段DP并得到全等三角形是解題的關(guān)鍵,(3)利用相似三角形對應(yīng)邊成比例求出P′A=AB是解題的關(guān)鍵.考點:切線的判定;勾股定理;相似三角形的判定與性質(zhì).4387773分析:(1)欲證明PA為⊙O的切線,只需證明OA⊥AP;
(2)通過相似三角形△ABC∽△PAO的對應(yīng)邊成比例來求線段AC的長度.解答:(1)證明:∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠BAC+∠B=90°.
又∵OP∥BC,
∴∠AOP=∠B,
∴∠BAC+∠AOP=90°.
∵∠P=∠BAC.
∴∠P+∠AOP=90°,
∴由三角形內(nèi)角和定理知∠PAO=90°,即OA⊥AP.
又∵OA是的⊙O的半徑,
∴PA為⊙O的切線;
(2)解:由(1)知,∠PAO=90°.∵OB=5,
∴OA=OB=5.
又∵OP=,
∴在直角△APO中,根據(jù)勾股定理知PA==,
由(1)知,∠ACB=∠PAO=90°.
∵∠BAC=∠P,
∴△ABC∽△POA,
∴=.
∴=,
解得AC=8.即AC的長度為8.
點評:本題考查的知識點有切線的判定與性質(zhì),三角形相似的判定與性質(zhì),得到兩個三角形中的兩組對應(yīng)角相等,進而得到兩個三角形相似,是解答(2)題的關(guān)鍵.考點:切線的判定;相似三角形的判定與性質(zhì).4387773專題:壓軸題.分析:(1)證明△ADC∽△BAC,可得∠BAC=∠ADC=90°,繼而可判斷AC是⊙O的切線.
(2)根據(jù)(1)所得△ADC∽△BAC,可得出CA的長度,繼而判斷∠CFA=∠CAF,利用等腰三角形的性質(zhì)得出AF的長度,繼而得出DF的長,在Rt△AFD中利用勾股定理可得出AF的長.解答:解:(1)∵AB是⊙O的直徑,
∴∠ADB=∠ADC=90°,
∵∠B=∠CAD,∠C=∠C,
∴△ADC∽△BAC,
∴∠BAC=∠ADC=90°,
∴BA⊥AC,
∴AC是⊙O的切線.
(2)∵△ADC∽△BAC(已證),
∴=,即AC2=BC×CD=36,
解得:AC=6,
在Rt△ACD中,AD==2,
∵∠CAF=∠CAD+∠DAE=∠ABF+∠BAE=∠AFD,
∴CA=CF=6,
∴DF=CA﹣CD=2,
在Rt△AFD中,AF==2.點評:本題考查了切線的判定、相似三角形的判定與性質(zhì),解答本題的關(guān)鍵是熟練掌握切線的判定定理、相似三角形的性質(zhì),勾股定理的表達式.考點:切線的性質(zhì);全等三角形的判定與性質(zhì);勾股定理;相似三角形的判定與性質(zhì).4387773專題:證明題;壓軸題.分析:(1)連結(jié)OD,由AB為⊙O的直徑,根據(jù)圓周角定理得AB為⊙O的直徑得∠ACB=90°,再由ACD=∠BCD=45°,則∠DAB=∠ABD=45°,所以△DAB為等腰直角三角形,所以DO⊥AB,根據(jù)切線的性質(zhì)得OD⊥PD,于是可得到DP∥AB;
(2)先根據(jù)勾股定理計算出AB=10,由于△DAB為等腰直角三角形,可得到AD==5;由△ACE為等腰直角三角形,得到AE=CE==3,在Rt△AED中利用勾股定理計算出DE=4,則CD=7,易證得∴△PDA∽△PCD,得到===,所以PA=PD,PC=PD,然后利用PC=PA+AC可計算出PD.解答:(1)證明:連結(jié)OD,如圖,
∵AB為⊙O的直徑,
∴∠ACB=90°,
∵∠ACB的平分線交⊙O于點D,
∴∠ACD=∠BCD=45°,
∴∠DAB=∠ABD=45°,
∴△DAB為等腰直角三角形,
∴DO⊥AB,
∵PD為⊙O的切線,
∴OD⊥PD,
∴DP∥AB;
(2)解:在Rt△ACB中,AB==10,
∵△DAB為等腰直角三角形,
∴AD===5,
∵AE⊥CD,
∴△ACE為等腰直角三角形,
∴AE=CE===3,
在Rt△AED中,DE===4,
∴CD=CE+DE=3+4=7,
∵AB∥PD,
∴∠PDA=∠DAB=45°,
∴∠APD=∠PCD,
而∠DPA=∠CPD,
∴△PDA∽△PCD,
∴===,
∴PA=PD,PC=PD,
而PC=PA+AC,
∴PD+6=PD,
∴PD=.
點評:本題考查了切線的性質(zhì):圓的切線垂直于過切點的半徑.也考查了圓周角定理定理、等腰直角三角形的性質(zhì)和三角形相似的判定與性質(zhì).考點:相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì).4387773專題:壓軸題.分析:(1)根據(jù)同角的余角相等得出∠CAD=∠B,根據(jù)AC:AB=1:2及點E為AB的中點,得出AC=BE,再利用AAS證明△ACD≌△BEF,即可得出EF=CD;
(2)作EH⊥AD于H,EQ⊥BC于Q,先證明四邊形EQDH是矩形,得出∠QEH=90°,則∠FEQ=∠GEH,再由兩角對應(yīng)相等的兩三角形相似證明△EFQ∽△EGH,得出EF:EG=EQ:EH,然后在△BEQ中,根據(jù)正弦函數(shù)的定義得出EQ=BE,在△AEH中,根據(jù)余弦函數(shù)的定義得出EH=AE,又BE=AE,進而求出EF:EG的值.解答:(1)證明:如圖1,
在△ABC中,∵∠CAB=90°,AD⊥BC于點D,
∴∠CAD=∠B=90°﹣∠ACB.
∵AC:AB=1:2,∴AB=2AC,
∵點E為AB的中點,∴AB=2BE,
∴AC=BE.
在△ACD與△BEF中,
,
∴△ACD≌△BEF,
∴CD=EF,即EF=CD;
(2)解:如圖2,作EH⊥AD于H,EQ⊥BC于Q,
∵EH⊥AD,EQ⊥BC,AD⊥BC,
∴四邊形EQDH是矩形,
∴∠QEH=90°,
∴∠FEQ=∠GEH=90°﹣∠QEG,
又∵∠EQF=∠EHG=90°,
∴△EFQ∽△EGH,
∴EF:EG=EQ:EH.
∵AC:AB=1:,∠CAB=90°,
∴∠B=30°.
在△BEQ中,∵∠BQE=90°,
∴sin∠B==,
∴EQ=BE.
在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,
∴cos∠AEH==,
∴EH=AE.
∵點E為AB的中點,∴BE=AE,
∴EF:EG=EQ:EH=BE:AE=1:.
點評:本題考查了相似三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì)、矩形的判定和性質(zhì),解直角三角形,綜合性較強,有一定難度.解題的關(guān)鍵是作輔助線,構(gòu)造相似三角形,并且證明四邊形EQDH是矩形.考點:切線的判定;圓周角定理;相似三角形的判定與性質(zhì).4387773專題:壓軸題.分析:(1)根據(jù)BD=BA得出∠BDA=∠BAD,再由∠BCA=∠BDA即可得出結(jié)論;
(2)判斷△BED∽△CBA,利用對應(yīng)邊成比例的性質(zhì)可求出DE的長度.
(3)連接OB,OD,證明△ABO≌△DBO,推出OB∥DE,繼而判斷OB⊥DE,可得出結(jié)論.解答:(1)證明:∵BD=BA,
∴∠BDA=∠BAD,
∵∠BCA=∠BDA(圓周角定理),
∴∠BCA=∠BAD.
(2)解:∵∠BDE=∠CAB(圓周角定理),∠BED=∠CBA=90°,
∴△BED∽△CBA,
∴=,即=,
解得:DE=.
(3)證明:連結(jié)OB,OD,
在△ABO和△DBO中,∵,
∴△ABO≌△DBO,
∴∠DBO=∠ABO,
∵∠ABO=∠OAB=∠BDC,
∴∠DBO=∠BDC,
∴OB∥ED,
∵BE⊥ED,
∴EB⊥BO,
∴OB⊥BE,
∴BE是⊙O的切線.點評:本題考查了切線的判定及圓周角定理的知識,綜合考查的知識點較多,解答本題要求同學(xué)們熟練掌握一些定理的內(nèi)容.考點:切線的性質(zhì);勾股定理;相似三角形的判定與性質(zhì).4387773分析:(1)連接OA,交EC于F,根據(jù)切線性質(zhì)得出∠OAB=90°,根據(jù)勾股定理求出即可;
(2)根據(jù)AE=AC推出弧AE=弧AC,根據(jù)垂徑定理求出OA⊥EC,根據(jù)平行線判定推出即可;
(3)證△OFC∽△OAB,求出FC,根據(jù)垂徑定理得出EC=2FC,代入求出即可.解答:(1)解:連接AO,交EC于F,
∵AB切⊙O于A,
∴OA⊥AB,
∴∠OAB=90°,
在Rt△OAB中,由勾股定理得:OA===6,
答:⊙O的半徑是6.
(2)直線EC與AB的位置關(guān)系是EC∥AB.
證明:∵AE=AC,
∴弧AE=弧AC,
∵OA過O,
∴OA⊥EC,
∵OA⊥AB,
∴EC∥AB.
(3)解:∵EC∥AB,
∴△OFC∽△OAB,
∴=,
∴=,
∴FC=,
∵OA⊥EC,OA過O,
∴EC=2FC=.
點評:本題考查了勾股定理,相似三角形的性質(zhì)和判定,切線性質(zhì),垂徑定理,圓周角定理的應(yīng)用,主要考查學(xué)生綜合運用性質(zhì)進行推理的能力.考點:相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì).專題:幾何綜合題;壓軸題.分析:(1)根據(jù)同角的余角相等求出∠1=∠E,再利用“角角邊”證明△ABD和△CEB全等,根據(jù)全等三角形對應(yīng)邊相等可得AB=CE,然后根據(jù)AC=AB+BC整理即可得證;
(2)(i)過點Q作QF⊥BC于F,根據(jù)△BFQ和△BCE相似可得=,然后求出QF=BF,再根據(jù)△ADP和△FPQ相似可得=,然后整理得到(AP﹣BF)(5﹣AP)=0,從而求出AP=BF,最后利用相似三角形對應(yīng)邊成比例可得=,從而得解;
(ii)判斷出DQ的中點的路徑為△BDQ的中位線MN.求出QF、BF的長度,利用勾股定理求出BQ的長度,再根據(jù)中位線性質(zhì)求出MN的長度,即所求之路徑長.解答:(1)證明:∵BD⊥BE,
∴∠1+∠2=180°﹣90°=90°,
∵∠C=90°,
∴∠2+∠E=180°﹣90°=90°,
∴∠1=∠E,
∵在△ABD和△CEB中,
,
∴△ABD≌△CEB(AAS),
∴AB=CE,
∴AC=AB+BC=AD+CE;
(2)(i)如圖,過點Q作QF⊥BC于F,
則△BFQ∽△BCE,
∴=,
即=,
∴QF=BF,
∵DP⊥PQ,
∴∠ADP+∠FPQ=180°﹣90°=90°,
∵∠FPQ+∠PQF=180°﹣90°=90°,
∴∠ADP=∠FPQ,
又∵∠A=∠PFQ=90°,
∴△ADP∽△FPQ,
∴=,
即=,
∴5AP﹣AP2+AP?BF=3?BF,
整理得,(AP﹣BF)(AP﹣5)=0,
∵點P與A,B兩點不重合,
∴AP≠5,
∴AP=BF,
由△ADP∽△FPQ得,=,
∴=;
(ii)線段DQ的中點所經(jīng)過的路徑(線段)就是△BDQ的中位線MN.
由(2)(i)可知,QF=AP.
當(dāng)點P運動至AC中點時,AP=4,∴QF=.
∴BF=QF×=4.
在Rt△BFQ中,根據(jù)勾股定理得:BQ===.
∴MN=BQ=.
∴線段DQ的中點所經(jīng)過的路徑(線段)長為.點評:本題考查了相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),(1)求出三角形全等的條件∠1=∠E是解題的關(guān)鍵,(2)(i)根據(jù)兩次三角形相似求出AP=BF是解題的關(guān)鍵,(ii)判斷出路徑為三角形的中位線是解題的關(guān)鍵.

- 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯誤問題請聯(lián)系客服,如若屬實,我們會補償您的損失
- 2.壓縮包下載后請先用軟件解壓,再使用對應(yīng)軟件打開;軟件版本較低時請及時更新
- 3.資料下載成功后可在60天以內(nèi)免費重復(fù)下載