



2021-2022學(xué)年廣西防城港市重點(diǎn)中學(xué)中考二模數(shù)學(xué)試題含解析
展開
這是一份2021-2022學(xué)年廣西防城港市重點(diǎn)中學(xué)中考二模數(shù)學(xué)試題含解析,共18頁。試卷主要包含了已知,代數(shù)式的值為等內(nèi)容,歡迎下載使用。
2021-2022中考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗. 一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC中點(diǎn),PE,PF分別交AB,AC于點(diǎn)E,F,給出下列四個(gè)結(jié)論:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四邊形AEPF,上述結(jié)論正確的有( )A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)2.用配方法解方程x2﹣4x+1=0,配方后所得的方程是( )A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣33.計(jì)算a?a2的結(jié)果是( ?。?/span>A.a B.a2 C.2a2 D.a34.在下列函數(shù)中,其圖象與x軸沒有交點(diǎn)的是( ?。?/span>A.y=2x B.y=﹣3x+1 C.y=x2 D.y=5.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長是( )A.2 B. C. D.26.一球鞋廠,現(xiàn)打折促銷賣出330雙球鞋,比上個(gè)月多賣10%,設(shè)上個(gè)月賣出x雙,列出方程( ?。?/span>A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=3307.如圖,△ABC的內(nèi)切圓⊙O與AB,BC,CA分別相切于點(diǎn)D,E,F,且AD=2,BC=5,則△ABC的周長為( )A.16 B.14 C.12 D.108.小明將某圓錐形的冰淇淋紙?zhí)籽厮囊粭l母線展開若不考慮接縫,它是一個(gè)半徑為12cm,圓心角為的扇形,則 A.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?/span>4cmB.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?/span>6cmC.圓錐形冰淇淋紙?zhí)椎母邽?/span>D.圓錐形冰淇淋紙?zhí)椎母邽?/span>9.如圖是某個(gè)幾何體的三視圖,該幾何體是( )A.圓錐 B.四棱錐 C.圓柱 D.四棱柱10.已知,代數(shù)式的值為( )A.-11 B.-1 C.1 D.11二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.有5張背面看上去無差別的撲克牌,正面分別寫著5,6,7,8,9,洗勻后正面向下放在桌子上,從中隨機(jī)抽取2張,抽出的卡片上的數(shù)字恰好是兩個(gè)連續(xù)整數(shù)的概率是__.12.在一個(gè)不透明的袋子里裝有除顏色外其它均相同的紅、藍(lán)小球各一個(gè),每次從袋中摸出一個(gè)小球記下顏色后再放回,摸球三次,“僅有一次摸到紅球”的概率是_____.13.如圖是一個(gè)幾何體的三視圖(圖中尺寸單位:),根據(jù)圖中數(shù)據(jù)計(jì)算,這個(gè)幾何體的表面積為__________.14.二次函數(shù)的圖象與y軸的交點(diǎn)坐標(biāo)是________.15.如圖,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F為DE中點(diǎn),若點(diǎn)D在直線BC上運(yùn)動(dòng),連接CF,則在點(diǎn)D運(yùn)動(dòng)過程中,線段CF的最小值是_____.16.如圖,在矩形ABCD中,過點(diǎn)A的圓O交邊AB于點(diǎn)E,交邊AD于點(diǎn)F,已知AD=5,AE=2,AF=1.如果以點(diǎn)D為圓心,r為半徑的圓D與圓O有兩個(gè)公共點(diǎn),那么r的取值范圍是______.三、解答題(共8題,共72分)17.(8分)在2018年韶關(guān)市開展的“善美韶關(guān)?情暖三江”的志愿者系列括動(dòng)中,某志愿者組織籌集了部分資金,計(jì)劃購買甲、乙兩種書包若干個(gè)送給貧困山區(qū)的學(xué)生,已知每個(gè)甲種書包的價(jià)格比每個(gè)乙種書包的價(jià)格貴10元,用350元購買甲種書包的個(gè)數(shù)恰好與用300元購買乙種書包的個(gè)數(shù)相同,求甲、乙兩種書包每個(gè)的價(jià)格各是多少元?18.(8分)為了傳承祖國的優(yōu)秀傳統(tǒng)文化,某校組織了一次“詩詞大會(huì)”,小明和小麗同時(shí)參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個(gè)字組成一句唐詩,其答案為“山重水復(fù)疑無路”. (1)小明回答該問題時(shí),僅對第二個(gè)字是選“重”還是選“窮”難以抉擇,隨機(jī)選擇其中一個(gè),則小明回答正確的概率是 ; (2)小麗回答該問題時(shí),對第二個(gè)字是選“重”還是選“窮”、第四個(gè)字是選“富”還是選“復(fù)”都難以抉擇,若分別隨機(jī)選擇,請用列表或畫樹狀圖的方法求小麗回答正確的概率.九宮格19.(8分)問題提出(1)如圖①,在矩形ABCD中,AB=2AD,E為CD的中點(diǎn),則∠AEB ∠ACB(填“>”“<”“=”);問題探究(2)如圖②,在正方形ABCD中,P為CD邊上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P位于何處時(shí),∠APB最大?并說明理由;問題解決(3)如圖③,在一幢大樓AD上裝有一塊矩形廣告牌,其側(cè)面上、下邊沿相距6米(即AB=6米),下邊沿到地面的距離BD=11.6米.如果小剛的睛睛距離地面的高度EF為1.6米,他從遠(yuǎn)處正對廣告牌走近時(shí),在P處看廣告效果最好(視角最大),請你在圖③中找到點(diǎn)P的位置,并計(jì)算此時(shí)小剛與大樓AD之間的距離.20.(8分)如圖,某次中俄“海上聯(lián)合”反潛演習(xí)中,我軍艦A測得潛艇C的俯角為30°.位于軍艦A正上方1000米的反潛直升機(jī)B側(cè)得潛艇C的俯角為68°.試根據(jù)以上數(shù)據(jù)求出潛艇C離開海平面的下潛深度.(結(jié)果保留整數(shù).參考數(shù)據(jù):sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, ≈1.7)21.(8分)為紀(jì)念紅軍長征勝利81周年,我市某中學(xué)團(tuán)委擬組織學(xué)生開展唱紅歌比賽活動(dòng),為此,該校隨即抽取部分學(xué)生就“你是否喜歡紅歌”進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果統(tǒng)計(jì)后繪制成如下統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖. 態(tài)度非常喜歡喜歡一般不知道頻數(shù)90b3010頻率a0.350.20 請你根據(jù)統(tǒng)計(jì)圖、表,提供的信息解答下列問題:(1)該校這次隨即抽取了 名學(xué)生參加問卷調(diào)查:(2)確定統(tǒng)計(jì)表中a、b的值:a= ,b= ;(3)該校共有2000名學(xué)生,估計(jì)全校態(tài)度為“非常喜歡”的學(xué)生人數(shù).22.(10分)解分式方程:23.(12分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB.(1)求證:AC是△BDE的外接圓的切線;(2)若AD=2,AE=6,求EC的長.24.計(jì)算:(﹣2)2+20180﹣
參考答案 一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
利用“角邊角”證明△APE和△CPF全等,根據(jù)全等三角形的可得AE=CF,再根據(jù)等腰直角三角形的定義得到△EFP是等腰直角三角形,根據(jù)全等三角形的面積相等可得△APE的面積等于△CPF的面積相等,然后求出四邊形AEPF的面積等于△ABC的面積的一半.【詳解】∵AB=AC,∠BAC=90°,點(diǎn)P是BC的中點(diǎn),∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①②正確;∵△AEP≌△CFP,同理可證△APF≌△BPE,∴△EFP是等腰直角三角形,故③錯(cuò)誤;∵△APE≌△CPF,∴S△APE=S△CPF,∴四邊形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正確,故選C.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),根據(jù)同角的余角相等求出∠APE=∠CPF,從而得到△APE和△CPF全等是解題的關(guān)鍵,也是本題的突破點(diǎn).2、A【解析】
方程變形后,配方得到結(jié)果,即可做出判斷.【詳解】方程,變形得:,配方得:,即故選A.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是了解一元二次方程﹣配方法,解題關(guān)鍵是熟練掌握完全平方公式.3、D【解析】a·a2= a3.故選D.4、D【解析】
依據(jù)一次函數(shù)的圖象,二次函數(shù)的圖象以及反比例函數(shù)的圖象進(jìn)行判斷即可.【詳解】A.正比例函數(shù)y=2x與x軸交于(0,0),不合題意;B.一次函數(shù)y=-3x+1與x軸交于(,0),不合題意;C.二次函數(shù)y=x2與x軸交于(0,0),不合題意;D.反比例函數(shù)y=與x軸沒有交點(diǎn),符合題意;故選D.5、C【解析】
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質(zhì),即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.【詳解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE=,∴OP=2PE=2,∵PD⊥OA,點(diǎn)M是OP的中點(diǎn),∴DM=OP=.故選C.考點(diǎn):角平分線的性質(zhì);含30度角的直角三角形;直角三角形斜邊上的中線;勾股定理.6、D【解析】解:設(shè)上個(gè)月賣出x雙,根據(jù)題意得:(1+10%)x=1.故選D.7、B【解析】
根據(jù)切線長定理進(jìn)行求解即可.【詳解】∵△ABC的內(nèi)切圓⊙O與AB,BC,CA分別相切于點(diǎn)D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周長=2+2+5+5=14,故選B.【點(diǎn)睛】本題考查了三角形的內(nèi)切圓以及切線長定理,熟練掌握切線長定理是解題的關(guān)鍵.8、C【解析】
根據(jù)圓錐的底面周長等于側(cè)面展開圖的扇形弧長,列出方程求出圓錐的底面半徑,再利用勾股定理求出圓錐的高.【詳解】解:半徑為12cm,圓心角為的扇形弧長是:,
設(shè)圓錐的底面半徑是rcm,
則,
解得:.
即這個(gè)圓錐形冰淇淋紙?zhí)椎牡酌姘霃绞?/span>2cm.
圓錐形冰淇淋紙?zhí)椎母邽?/span>.
故選:C.【點(diǎn)睛】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計(jì)算解題思路:解決此類問題時(shí)要緊緊抓住兩者之間的兩個(gè)對應(yīng)關(guān)系:圓錐的母線長等于側(cè)面展開圖的扇形半徑;圓錐的底面周長等于側(cè)面展開圖的扇形弧長正確對這兩個(gè)關(guān)系的記憶是解題的關(guān)鍵.9、B【解析】
由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀【詳解】解:根據(jù)主視圖和左視圖為矩形判斷出是柱體,根據(jù)俯視圖是長方形可判斷出這個(gè)幾何體應(yīng)該是四棱柱.故選B.【點(diǎn)睛】本題考查了由三視圖找到幾何體圖形,屬于簡單題,熟悉三視圖概念是解題關(guān)鍵.10、D【解析】
根據(jù)整式的運(yùn)算法則,先利用已知求出a的值,再將a的值帶入所要求解的代數(shù)式中即可得到此題答案.【詳解】解:由題意可知:,原式故選:D.【點(diǎn)睛】此題考查整式的混合運(yùn)算,解題的關(guān)鍵在于利用整式的運(yùn)算法則進(jìn)行化簡求得代數(shù)式的值 二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】
列表得出所有等可能的情況數(shù),找出恰好是兩個(gè)連續(xù)整數(shù)的情況數(shù),即可求出所求概率.【詳解】解:列表如下: 567895﹣﹣﹣(6、5)(7、5)(8、5)(9、5)6(5、6)﹣﹣﹣(7、6)(8、6)(9、6)7(5、7)(6、7)﹣﹣﹣(8、7)(9、7)8(5、8)(6、8)(7、8)﹣﹣﹣(9、8)9(5、9)(6、9)(7、9)(8、9)﹣﹣﹣所有等可能的情況有20種,其中恰好是兩個(gè)連續(xù)整數(shù)的情況有8種,則P(恰好是兩個(gè)連續(xù)整數(shù))= 故答案為.【點(diǎn)睛】此題考查了列表法與樹狀圖法,概率=所求情況數(shù)與總情況數(shù)之比.12、【解析】摸三次有可能有:紅紅紅、紅紅藍(lán)、紅藍(lán)紅、紅藍(lán)藍(lán)、藍(lán)紅紅、藍(lán)紅藍(lán)、藍(lán)藍(lán)紅、藍(lán)藍(lán)藍(lán)共計(jì)8種可能,其中僅有一個(gè)紅壞的有:紅藍(lán)藍(lán)、藍(lán)紅藍(lán)、藍(lán)藍(lán)紅共計(jì)3種,所以“僅有一次摸到紅球”的概率是.故答案是:.13、【解析】分析:由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀,確定圓錐的母線長和底面半徑,從而確定其表面積.詳解:由主視圖和左視圖為三角形判斷出是錐體,由俯視圖是圓形可判斷出這個(gè)幾何體應(yīng)該是圓錐;根據(jù)三視圖知:該圓錐的母線長為6cm,底面半徑為2cm,故表面積=πrl+πr2=π×2×6+π×22=16π(cm2).故答案為:16π.點(diǎn)睛:考查學(xué)生對三視圖掌握程度和靈活運(yùn)用能力,同時(shí)也體現(xiàn)了對空間想象能力方面的考查.14、【解析】
求出自變量x為1時(shí)的函數(shù)值即可得到二次函數(shù)的圖象與y軸的交點(diǎn)坐標(biāo).【詳解】把代入得:,∴該二次函數(shù)的圖象與y軸的交點(diǎn)坐標(biāo)為,故答案為.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,在y軸上的點(diǎn)的橫坐標(biāo)為1.15、1【解析】試題分析:當(dāng)點(diǎn)A、點(diǎn)C和點(diǎn)F三點(diǎn)共線的時(shí)候,線段CF的長度最小,點(diǎn)F在AC的中點(diǎn),則CF=1.16、【解析】
因?yàn)橐渣c(diǎn)D為圓心,r為半徑的圓D與圓O有兩個(gè)公共點(diǎn),則圓D與圓O相交,圓心距滿足關(guān)系式:|R-r|<d<R+r,求得圓D與圓O的半徑代入計(jì)算即可.【詳解】連接OA、OD,過O點(diǎn)作ON⊥AE,OM⊥AF.AN=AE=1,AM=AF=2,MD=AD-AM=3∵四邊形ABCD是矩形∴∠BAD=∠ANO=∠AMO=90°,∴四邊形OMAN是矩形∴OM=AN=1∴OA=,OD=∵以點(diǎn)D為圓心,r為半徑的圓D與圓O有兩個(gè)公共點(diǎn),則圓D與圓O相交∴【點(diǎn)睛】本題考查了圓與圓相交的條件,熟記圓與圓相交時(shí)圓的半徑與圓心距的關(guān)系是關(guān)鍵. 三、解答題(共8題,共72分)17、每件乙種商品的價(jià)格為1元,每件甲種商品的價(jià)格為70元【解析】
設(shè)每件甲種商品的價(jià)格為x元,則每件乙種商品的價(jià)格為(x-10)元,根據(jù)數(shù)量=總價(jià)÷單價(jià)結(jié)合用350元購買甲種書包的個(gè)數(shù)恰好與用300元購買乙種書包的個(gè)數(shù)相同,即可得出關(guān)于x的分式方程,解之并檢驗(yàn)后即可得出結(jié)論.【詳解】解:設(shè)每件甲種商品的價(jià)格為x元,則每件乙種商品的價(jià)格為(x﹣10)元,根據(jù)題意得:,解得:x=70,經(jīng)檢驗(yàn),x=70是原方程的解,∴x﹣10=1.答:每件乙種商品的價(jià)格為1元,每件甲種商品的價(jià)格為70元.【點(diǎn)睛】本題考查了分式方程的應(yīng)用,解題的關(guān)鍵是:根據(jù)數(shù)量=總價(jià)÷單價(jià),列出分式方程.18、(1);(2) 【解析】試題分析:(1)利用概率公式直接計(jì)算即可;(2)畫出樹狀圖得到所有可能的結(jié)果,再找到回答正確的數(shù)目即可求出小麗回答正確的概率.試題解析:(1)∵對第二個(gè)字是選“重”還是選“窮”難以抉擇,∴若隨機(jī)選擇其中一個(gè)正確的概率=,故答案為;(2)畫樹形圖得:由樹狀圖可知共有4種可能結(jié)果,其中正確的有1種,所以小麗回答正確的概率=.考點(diǎn):列表法與樹狀圖法;概率公式.19、(1)>;(2)當(dāng)點(diǎn)P位于CD的中點(diǎn)時(shí),∠APB最大,理由見解析;(3)4米.【解析】
(1)過點(diǎn)E作EF⊥AB于點(diǎn)F,由矩形的性質(zhì)和等腰三角形的判定得到:△AEF是等腰直角三角形,易證∠AEB=90°,而∠ACB<90°,由此可以比較∠AEB與∠ACB的大小(2)假設(shè)P為CD的中點(diǎn),作△APB的外接圓⊙O,則此時(shí)CD切⊙O于P,在CD上取任意異于P點(diǎn)的點(diǎn)E,連接AE,與⊙O交于點(diǎn)F,連接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB與∠APB均為⊙O中弧AB所對的角,則∠AFB=∠APB,即可判斷∠APB與∠AEB的大小關(guān)系,即可得點(diǎn)P位于何處時(shí),∠APB最大;(3)過點(diǎn)E作CE∥DF,交AD于點(diǎn)C,作AB的垂直平分線,垂足為點(diǎn)Q,并在垂直平分線上取點(diǎn)O,使OA=CQ,以點(diǎn)O為圓心,OB為半徑作圓,則⊙O切CE于點(diǎn)G,連接OG,并延長交DF于點(diǎn)P,連接OA,再利用勾股定理以及長度關(guān)系即可得解.【詳解】解:(1)∠AEB>∠ACB,理由如下:如圖1,過點(diǎn)E作EF⊥AB于點(diǎn)F,∵在矩形ABCD中,AB=2AD,E為CD中點(diǎn),∴四邊形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案為:>;(2)當(dāng)點(diǎn)P位于CD的中點(diǎn)時(shí),∠APB最大,理由如下:假設(shè)P為CD的中點(diǎn),如圖2,作△APB的外接圓⊙O,則此時(shí)CD切⊙O于點(diǎn)P,在CD上取任意異于P點(diǎn)的點(diǎn)E,連接AE,與⊙O交于點(diǎn)F,連接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故點(diǎn)P位于CD的中點(diǎn)時(shí),∠APB最大:(3)如圖3,過點(diǎn)E作CE∥DF交AD于點(diǎn)C,作線段AB的垂直平分線,垂足為點(diǎn)Q,并在垂直平分線上取點(diǎn)O,使OA=CQ,以點(diǎn)O為圓心,OA長為半徑作圓,則⊙O切CE于點(diǎn)G,連接OG,并延長交DF于點(diǎn)P,此時(shí)點(diǎn)P即為小剛所站的位置,由題意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米, AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小剛與大樓AD之間的距離為4米時(shí)看廣告牌效果最好.【點(diǎn)睛】本題考查了矩形的性質(zhì),正方形的判定與性質(zhì),圓周角定理的推論,三角形外角的性質(zhì),線段垂直平分線的性質(zhì),勾股定理等知識(shí),難度較大,熟練掌握各知識(shí)點(diǎn)并正確作出輔助圓是解答本題的關(guān)鍵.20、潛艇C離開海平面的下潛深度約為308米【解析】試題分析:過點(diǎn)C作CD⊥AB,交BA的延長線于點(diǎn)D,則AD即為潛艇C的下潛深度,用銳角三角函數(shù)分別在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之間的關(guān)系列出方程求解.試題解析:過點(diǎn)C作CD⊥AB,交BA的延長線于點(diǎn)D,則AD即為潛艇C的下潛深度,根據(jù)題意得:∠ACD=30°,∠BCD=68°,設(shè)AD=x,則BD=BA+AD=1000+x,在Rt△ACD中,CD= = = 在Rt△BCD中,BD=CD?tan68°,∴325+x= ?tan68°解得:x≈100米,∴潛艇C離開海平面的下潛深度為100米.點(diǎn)睛:本題考查了解直角三角形的應(yīng)用,解題的關(guān)鍵是作出輔助線,從題目中找出直角三角形并選擇合適的邊角關(guān)系求解.視頻21、(1)200,;(2)a=0.45,b=70;(3)900名.【解析】
(1)根據(jù)“一般”和“不知道”的頻數(shù)和頻率求總數(shù)即可(2)根據(jù)(1)的總數(shù),結(jié)合頻數(shù),頻率的大小可得到結(jié)果(3)根據(jù)“非常喜歡”學(xué)生的比值就可以計(jì)算出2000名學(xué)生中的人數(shù).【詳解】解:(1)“一般”頻數(shù)30,“不知道”頻數(shù)10,兩者頻率0.20,根據(jù)頻數(shù)的計(jì)算公式可得,總數(shù)=頻數(shù)/頻率=(名);(2)“非常喜歡”頻數(shù)90,a= ;(3).故答案為(1)200,;(2)a=0.45,b=70;(3)900名.【點(diǎn)睛】此題重點(diǎn)考察學(xué)生對頻數(shù)和頻率的應(yīng)用,掌握頻率的計(jì)算公式是解題的關(guān)鍵.22、無解【解析】
首先進(jìn)行去分母,將分式方程轉(zhuǎn)化為整式方程,然后按照整式方程的求解方法進(jìn)行求解,最后對所求的解進(jìn)行檢驗(yàn),看是否能使分母為零.【詳解】解:兩邊同乘以(x+2)(x-2)得:x(x+2)-(x+2)(x-2)=8去括號(hào),得:+2x-+4=8 移項(xiàng)、合并同類項(xiàng)得:2x=4 解得:x=2經(jīng)檢驗(yàn),x=2是方程的增根 ∴方程無解【點(diǎn)睛】本題考查解分式方程,注意分式方程結(jié)果要檢驗(yàn).23、(1)證明見解析;(2)1.【解析】試題分析:(1)取BD的中點(diǎn)0,連結(jié)OE,如圖,由∠BED=90°,根據(jù)圓周角定理可得BD為△BDE的外接圓的直徑,點(diǎn)O為△BDE的外接圓的圓心,再證明OE∥BC,得到∠AEO=∠C=90°,于是可根據(jù)切線的判定定理判斷AC是△BDE的外接圓的切線;(2)設(shè)⊙O的半徑為r,根據(jù)勾股定理得62+r2=(r+2)2,解得r=2,根據(jù)平行線分線段成比例定理,由OE∥BC得,然后根據(jù)比例性質(zhì)可計(jì)算出EC.試題解析:(1)證明:取BD的中點(diǎn)0,連結(jié)OE,如圖,∵DE⊥EB,∴∠BED=90°,∴BD為△BDE的外接圓的直徑,點(diǎn)O為△BDE的外接圓的圓心,∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠EB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴OE⊥AE,∴AC是△BDE的外接圓的切線;(2)解:設(shè)⊙O的半徑為r,則OA=OD+DA=r+2,OE=r,在Rt△AEO中,∵AE2+OE2=AO2,∴62+r2=(r+2)2,解得r=2,∵OE∥BC,∴,即,∴CE=1.考點(diǎn):1、切線的判定;2、勾股定理24、﹣1【解析】分析:首先計(jì)算乘方、零次冪和開平方,然后再計(jì)算加減即可.詳解:原式=4+1-6=-1.點(diǎn)睛:此題主要考查了實(shí)數(shù)的運(yùn)算,關(guān)鍵是掌握乘方的意義、零次冪計(jì)算公式和二次根式的性質(zhì).
相關(guān)試卷
這是一份2023年廣西防城港市中考數(shù)學(xué)二模試卷(含解析),共21頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。
這是一份2023年廣西防城港市防城區(qū)中考數(shù)學(xué)二模試卷(含解析),共20頁。試卷主要包含了選擇題,填空題,計(jì)算題,解答題等內(nèi)容,歡迎下載使用。
這是一份2022屆廣西防城港市防城區(qū)港市重點(diǎn)中學(xué)中考三模數(shù)學(xué)試題含解析,共29頁。試卷主要包含了答題時(shí)請按要求用筆,下列運(yùn)算正確的是,要使式子有意義,的取值范圍是等內(nèi)容,歡迎下載使用。

相關(guān)試卷 更多
- 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯(cuò)誤問題請聯(lián)系客服,如若屬實(shí),我們會(huì)補(bǔ)償您的損失
- 2.壓縮包下載后請先用軟件解壓,再使用對應(yīng)軟件打開;軟件版本較低時(shí)請及時(shí)更新
- 3.資料下載成功后可在60天以內(nèi)免費(fèi)重復(fù)下載