


滬科版八年級下冊16.2 二次根式的運算精品第1課時教案設(shè)計
展開
這是一份滬科版八年級下冊16.2 二次根式的運算精品第1課時教案設(shè)計,共5頁。教案主要包含了知識與技能,過程與方法,情感態(tài)度,教學重點,教學難點,教師點評,教學說明等內(nèi)容,歡迎下載使用。
2.二次根式的加減第1課時 二次根式的加減【知識與技能】理解和掌握二次根式加減的方法.【過程與方法】先提出問題,分析問題,在分析問題中,滲透對二次根式進行加減的方法的理解.再總結(jié)經(jīng)驗,用它來指導根式的計算和化簡.【情感態(tài)度】通過本節(jié)的學習培養(yǎng)學生準確計算和化簡的嚴謹?shù)目茖W精神,發(fā)展學生觀察、分析、發(fā)現(xiàn)問題的能力.【教學重點】二次根式加減運算.【教學難點】會熟練進行二次根式的加減運算.一、復習問題,導入新課學生活動:計算下列各式.(1)2x+3x; (2)2x2-3x2+5x2;(3)x+2x+3y; (4)3a2-2a2+a3.【教師點評】 上面題目的結(jié)果,實際上是我們以前所學的同類項合并.同類項合并就是字母不變,系數(shù)相加減.【教學說明】 通過對同類項的復習,為本節(jié)課同類二次根式的學習提供思路.二、合作探究,探索新知1.問題1 現(xiàn)有一塊長7.5 dm、寬5 dm的木板,能否采用如圖所示的方式,在這塊木板上截出兩個面積分別是8 dm2和18 dm2的正方形木板?問:能截出兩塊正方形木板的條件是什么?能用數(shù)學式子表示嗎?能否進一步計算?這是一種什么運算?能進一步計算,這種計算是兩個二次根式的加法運算.【教學說明】 通過對具體問題的探究,引起學生的探究興趣,同時引導學生思考如何進行計算.2.問題2 怎樣計算如果看不出能否化簡,我們不妨把問題簡化,先看算式能否化簡.=(3-1)=2.這里的兩個二次根式有什么特征?被開方數(shù)相同,即為同類二次根式. 你能得到這樣的兩個二次根式加減的方法嗎?將同類二次根式用分配律合并【教學說明】 類比于合并同類項,逐步引導學生探究二次根式加減的運算方法和步驟.3.算式與算式有什么相同點與不同點?請化簡算式,并說出每一步化簡的理由.能否把這種計算方法推廣到一般?【教學說明】通過對比,引導學生進行探究,逐步掌握相關(guān)步驟.4.請計算,并說出計算依據(jù). 【教學說明】 讓學生自主完成,并進行思考和總結(jié).5.請總結(jié)二次根式加減的步驟、依據(jù)和基本思想.步驟:“一化簡、二判斷、三合并”;依據(jù):二次根式的性質(zhì)、分配律和整式加減法則;基本思想:把二次根式加減問題轉(zhuǎn)化為整式加減問題.【教學說明】 教師根據(jù)學生的回答進行總結(jié)和強調(diào),學生做好筆記.三、示例講解,掌握新知例1 計算【分析】第一步,將不是最簡二次根式的項化為最簡二次根式;第二步,將相同的最簡二次根式進行合并.【教學說明】 例1比較簡單,可以讓學生自主對照步驟進行計算,教師再根據(jù)學生出現(xiàn)的問題進行強調(diào).例2 計算【教學說明】 例2(1)稍微復雜些,教師可以引導學生完成,然后讓學生自主完成(2),重點強調(diào)化簡的步驟.四、練習反饋,鞏固提高1.以下二次根式:①;②;③;④中,與是同類二次根式的是( )A.①和② B.②和③ C.①和④ D.③和④【教學說明】 1、2兩題主要要掌握最簡二次根式的特征和化簡方法,3、4、5主要是計算,要注意計算的步驟.五、師生互動,課堂小結(jié)(1)二次根式的加減運算分哪幾步進行?每一個步驟的依據(jù)是什么?(2)在二次根式的加減中,主要的想法是怎樣的?(3)在二次根式加減中,有哪些地方容易出現(xiàn)錯誤?【教學說明】 教師引導學生對本節(jié)課的重點知識進行回顧,重點強調(diào)二次根式加減的步驟以及每一步要注意什么,加深學生的印象,形成計算方法.完成同步練習冊中本課時的練習.本節(jié)課先復習合并同類項、整式的加減,為學習二次根式的加減做好準備.通過具體的實際問題,引出二次根式的加減問題,激發(fā)學生的學習興趣和強烈的求知欲望.在解決實際問題時,根據(jù)所得到的式子,需要先對二次根式進行化簡,化簡為最簡二次根式后仿照合并同類項的方式,合并同類二次根式.然后借助詳細的探究再與學生共同總結(jié)出“二次根式的加減”的具體步驟和注意問題:①化成最簡二次根式;②找出同類二次根式;③合并同類二次根式,不是同類二次根式的不能合并.通過本節(jié)課的教學,應該注意以下問題:1.將二次根式化簡為最簡二次根式是這節(jié)課的關(guān)鍵一步,不化簡為最簡二次根式,合并同類二次根式、二次根式的加減就無從談起,因此這一環(huán)節(jié)應多下一些功夫,多用些時間. 2.在講授例題時應仿照合并同類項的方法進行,學生更容易接受一些,以免顯得太突然. 3.對易出錯的地方應重點強調(diào),再三強調(diào),如:“二次根式的系數(shù)是帶分數(shù)的要寫成假分數(shù)的形式”,真正做到讓每一名學生都清楚這一要求.
相關(guān)教案
這是一份初中數(shù)學人教版八年級下冊16.3 二次根式的加減第2課時教案,共6頁。教案主要包含了教學目標,課型,課時,教學重難點,課前準備,教學過程,課后作業(yè),板書設(shè)計等內(nèi)容,歡迎下載使用。
這是一份初中數(shù)學蘇科版八年級下冊第12章 二次根式12.3 二次根式的加減第2課時教案
這是一份初中數(shù)學蘇科版八年級下冊12.3 二次根式的加減第1課時教案

相關(guān)教案 更多
- 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯誤問題請聯(lián)系客服,如若屬實,我們會補償您的損失
- 2.壓縮包下載后請先用軟件解壓,再使用對應軟件打開;軟件版本較低時請及時更新
- 3.資料下載成功后可在60天以內(nèi)免費重復下載